

2009.7.

Gun Lee endovert@etri.re.kr ETRI Gerard J. Kim gjkim@korea.ac.kr Korea University

Contents

- Mixed Reality and X3D Standard
- Video Supports in X3D Standard
- Supporting Mixed Reality Visualization in X3D Standard

Mixed Reality and X3D Standard

_

Augmented Reality

- What is AR (Augmented Reality) ?
 - "Augmented Reality (AR) is a field of computer research which deals with the combination of real-world and computer-generated data." – wikipedia.org
- Key Features of AR [R. Azuma 97]
 - Combines real and virtual images
 - Interactive in Real-Time
 - Registered in 3D Real World

[HRL Laboratories, 1998]

ARToolkit
[HITLab, Univ. of Washington, 1999]

Mixed Reality

What is MR (Mixed Reality) ?

[Paul Milgram's Reality-Virtuality Continuum (1994)]

,

Mixed Reality and X3D Standard

- Does MR need X3D?
 - Today, MR researches mostly focuses on interfaces
 - Tracking
 - Visualization
 - · Hardware interfaces
 - · Interaction methods
 - Becoming one of mainstream media: Interface => Contents
 - As a content, it has to be ...
 - · Easily shared
 - · Easily published and distributed
 - Internet (WWW) IS the place where we share contents
 - MR systems already uses VRML and X3D for geometry data
- Does X3D need MR?
 - Why not?
 - Extending its power of expression
- What do we need more in X3D to support MR?

Making X3D become MR capable

- Add real world view
 - Live video (esp. camera on the user's computer)
 - Merging real and virtual image correctly
 - · Camera calibration
 - Occlusion

Topics this talk covers...

- Shadow
- · Reflection & Refraction
- Registration
 - Relationship between real and virtual spaces (+ Tracking user's viewpoint)
 - Global and Local coordinates
- Real-time Interactive
 - Tracking (users & other real world objects)
 - Physics, collision-detection, etc.

.

Video Supports in X3D Standard

Video Supports in X3D Standard

MovieTexture Node

- <Shape>
 - <Appearance>
 - <MovieTexture loop='true' url=' "wrlpool.mpg"
 - "http://www.web3d.org/x3d/content/examples/Vrml2.0Sourcebook/wrlpool.mpg" '/>
 - </Appearance>
 - <IndexedFaceSet ccw='false' coordIndex='0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16'>
 - <Coordinate point='2.00 0.6 0.00 1.85 0.6 0.67 1.41 0.6 1.41 0.67 0.6 1.85
 0.00 0.6 2.00 -0.67 0.6 1.85 -1.41 0.6 1.41 -1.85 0.6 0.67 -2.00 0.6 0.00 -1.85 0.6
 -0.67 -1.41 0.6 -1.41 -0.67 0.6 -1.85 0.00 0.6 -2.00 0.67 0.6 -1.85 1.41 0.6 -1.41
 1.85 0.6 -0.67 2.00 0.6 0.00'/>
 - </IndexedFaceSet>
- </Shape>

http://www.web3d.org/x3d/content/examples/Vrml2.0Sourcebook/Chapter17-Textures/_pages/page14.html

MovieTexture with a webcam video stream [planet9.com]

MovieTexture Node

- Limitations as a MR visualization feature
 - Video sources are in URI
 - · Needs streaming server for live video camera
 - Delay
 - Lacking of camera parameter information
 - Incorrect depth values
 - · Especially not good as an AR background
 - Texture on a billboard has depth values
 - Depth image of the real world required for correct occlusions

11

Supporting Mixed Reality Visualization in X3D Standard

Live Video Integration

- Live video background
 - Augmented Reality

AR Magic Lens [HITLab NZ, 2005]

- Live video texture
 - Augmented Virtuality
 - · Alpha matte masking background of the real scene
 - Applications to visualizing reflections/refractions

History, Special [KBS, 1998~2003]

Refractive AR [HITLabNZ, 2007]

13

Live Video Integration (continued)

- LiveCamera Node (proposed)
 - Child of a scene node
 - Represents a live video camera (on the user's computer)
 - The 'source' field represents device ID (in URN or simple string)
 - The 'image' field provides live video image
 - The 'projmat' field provides internal parameters of the camera
 - 'image' and 'projmat' fields provide distortion corrected data
 - The optional 'position' and 'orientation' fields provide camera tracking data

```
Live Camera {
   SFString
                   [in, out]
                             source
                                      "default"
   SFImage
                   [out]
                             image
                                      "1000..."
   SFMatrix4f
                   [out]
                             projmat
   SFBool
                   [out]
                                       FALSE
                             on
                             tracking FALSE
   SFBool
                   [out]
                             position
   SFVec3f
                   [out]
   SFRotation
                   [out]
                             orientation
```

Live Video Integration (continued)

Extending Background Node

```
<Scene>
    <LiveCamera DEF='USBCam1' source='default'/>
    <Background liveSource='USBCam1'/>
    </Scene>
```

```
<Scene>
    <Background videoUrl='bgvideo.mpg'/>
</Scene>
```

* Alternatively, new nodes could be defined (e.g., LiveBackground or MovieBackground)

15

Live Video Integration (continued)

Extending MovieTexture Node

Supporting blue screens

Camera Calibration

- Matching virtual camera to real camera
 - Internal parameter = projection matrix
 - External parameter = camera pose = model-view transform

17

Camera Calibration (continued)

- Standard Viewpoint Nodes
 - OrthoViewpoint
 - Orthographic projection
 - fieldOfView in min-max box
 - Viewpoint
 - Perspective projection
 - · fieldOfView in radian

- Viewpoint node for MR visualization proposed
 - Directly assigning projection matrices
 - Assigning values from LiveCamera
 - Easily supports tracking information
 - · Position, orientation field
 - Defined in X3DViewpointNode abstract type

Camera Calibration (continued)

LiveViewpoint

```
LiveViewpoint: X3DViewpointNode{
   SFMatrix4f
                   [in]
                            projmat
   SFVec3f
                   [in,out]
                            position
   SFRotation
                  [in,out]
                            orientation
   SFNode
                   [in,out]
                            liveCamera
<Scene>
   <LiveCamera DEF='USBCam1' source='dev#'/>
   <LiveViewpoint liveCamera='USBCam1'/>
   <Shape> ... </Shape>
</Scene>
```

Or, using routes...

```
<Scene>
   <LiveCamera DEF='USBCam1' source='dev#'/>
   <LiveViewpoint DEF='MRView'/>
   <Shape> ... </Shape>
   <ROUTE fromNode='USBCam1' fromField='projmat'
            toNode='MRView' toField='projmat'/>
   <ROUTE fromNode='Tracker' fromField='position'
            toNode='MRView' toField='projmat'/>
   < ROUTE from Node = 'Tracker' from Field = 'orientation'
            toNode='MRView' toField='projmat'/>
</Scene>
```


Correct Occlusions

- Ghost objects
- Live depth image (from stereo vision)

[D. Breen, Calif. Inst. of Tech / ECRC, 1996]

Correct Occlusions (continued)

Ghost object flag as a field of Shape (or Group) node

```
<Scene>
    <Shape isGhost='true'>
        <Appearance>
        <Material/>
        </Appearance>
        <IndexedFaceSet ccw='false' coordIndex='0 1 2 ... 15 16'>
              <Coordinate point='2.00 0.6 0.00 ... 2.00 0.6 0.00'/>
              </IndexedFaceSet>
        </Shape>
</Scene>
```

```
Electronics and Telecommunications
Research Institute
```

21

Correct Occlusions (continued)

- Live depth image
 - Depth cameras
 - Same as a LiveCamera, except provided images represent depth values, not color/intensity

Summary

- Live video integration
 - Live video camera support
 - · LiveCamera node proposed
 - Background
 - Add fields to Background node + route with LiveCamera
 - Defining a new node could be also an alternative (e.g., LiveBackground node)
 - Texture
 - Add fields to MovieTexture node + route with LiveCamera
- Camera calibration
 - Projection matrix
 - LiveViewpoint node proposed + route with LiveCamera
 - Lens distortion
 - Let LiveCamera provide distortion corrected information
- Correct occlusions
 - Ghost objects
 - · Add a flag field to Shape/Group nodes
 - Live depth image
 - Add fields to Background node + route with LiveCamera

23

Future work

- Proof of concept implementation
- Tracking supports for registration and interaction
 - Integration of AR software libraries into X3D browsers/viewers
 - Ex. ARToolkit, ARTag, BazAR etc.
 - Proposed LiveCamera node only provides world coordinate
 - Local coordinates of multiple physical objects not considered yet (Must be resolved to support interactions in MR environments)
- Shadows, Reflections & Refractions
 - Connection with projective texture mapping standards
 - New work item with environmental light maps
 - Environmental map/texturing + Shaders

Thank you!

Q & A

25