<div dir="ltr">Indeed, RDF2Vec might be something that people here are interested in, who are interested in data mining RDF documents (and Vince's embeddings).<div><br></div><div><a href="https://link.springer.com/chapter/10.1007/978-3-319-46523-4_30">RDF2Vec: RDF Graph Embeddings for Data Mining | SpringerLink</a><br></div><div><br></div><div>I have not read or downloaded the article.</div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Wed, May 25, 2022 at 9:25 PM John Carlson <<a href="mailto:yottzumm@gmail.com">yottzumm@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="auto">Vince, embedding is a technical term from machine learning for taking large amounts of text (word2vec) or objects (Amazon? Sagemaker—object2vec) and converting word or object adjacency (in spatial or temporal terms) into vectors. This allows words (or things that otherwise aren’t reduced to scalar or matrix values) to be used as vectors instead of using symbolic manipulation. One can even do vector arithmetic on words, and it works! Obviously words farther away from a central word should probably have a lower weight while embedding.</div><div dir="auto"><br></div><div dir="auto">There are many …2vec projects.</div><div dir="auto"><br></div><div dir="auto">For example one might use the 6 words around a word throughout a document to predict what word comes next after completing embedding.</div><div dir="auto"><br></div><div dir="auto">One needs a vector space to compute gradient descent in neural network backpropagation, since gradient descent cannot be computed on written words. I believe that the embedding provides such a space, too.</div><div dir="auto"><br></div><div dir="auto">In other words, embedding means converting data into vectors so things like TensorFlow will work!</div><div dir="auto"><br></div><div dir="auto">The old story used to be that a book can be converted into a vector of a very large space. Embedding is taking that huge space and reduces the dimensions, and increases the number of vectors.</div><div dir="auto"><br></div><div dir="auto">Hope this helps, and will eventually be another tool for 3D practitioners.</div><div dir="auto"><br></div><div dir="auto">John</div><div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Wed, May 25, 2022 at 8:52 PM <a href="mailto:vmarchetti@kshell.com" target="_blank">vmarchetti@kshell.com</a> <<a href="mailto:vmarchetti@kshell.com" target="_blank">vmarchetti@kshell.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">I do not know what capabilities Word2vec or SageMaker offer.<br>
<br>
I have been working on embedding XMP metadata packets in X3D Metadata nodes. XMP uses a subset of RDF. The conversions from XMP XML packets to and from X3D Metadata (XML Encoding) are implemented in XSLT stylesheet in the github project <a href="https://github.com/vincentmarchetti/x3d-xslt-tools" rel="noreferrer" target="_blank">https://github.com/vincentmarchetti/x3d-xslt-tools</a> .<br>
<br>
This work is in support of the ISO JWG-16 STEP Geometry Services project, which has adopted XMP as a schema for metadata to describe CAD web services. It may also be useful in embedding XMP in general in X3D .<br>
<br>
Vince Marchetti<br>
<br>
> On May 25, 2022, at 6:18 PM, John Carlson <<a href="mailto:yottzumm@gmail.com" target="_blank">yottzumm@gmail.com</a>> wrote:<br>
> <br>
> Does anyone have RDF embeddings for X3D, like word embeddings for Word2vec or object embeddings for SageMaker?<br>
> <br>
> Thanks for info!<br>
> <br>
> John<br>
> -- <br>
> semantics-public mailing list<br>
> <a href="mailto:semantics-public@web3d.org" target="_blank">semantics-public@web3d.org</a><br>
> <a href="http://web3d.org/mailman/listinfo/semantics-public_web3d.org" rel="noreferrer" target="_blank">http://web3d.org/mailman/listinfo/semantics-public_web3d.org</a><br>
<br>
</blockquote></div></div>
</blockquote></div>