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Summary

This document describes the current state of implementation of the RoboEarth
representation language. This language is designed for two main purposes.
First, it should allow to represent all information a robot needs to perform
a reasonably complex task. This includes information about

e Plans, which consist of the actions a task is composed of, ordering
constraints among them, monitoring and failure handling, as well as
action parameters like objects, locations, grasp types;

e Objects, especially types, dimensions, states, and other properties, but
also locations of specific objects a robot has detected, and object models
that can be used for recognition; and the

e Enuvironment, including maps for self-localization as well as poses of
objects like pieces of furniture.

The second main task of the RoboEarth language is to allow a robot to
decide on its own if a certain piece of information is useful to it. That means,
a robot must be able to check if an action description contains a plan for the
action it would like to do, if it meets all requirements to perform this action,
and if it has the sensors needed to use an object recognition model. Using
the semantic descriptions in the RoboEarth language, a robot can perform
the checks using logical inference.



Chapter 1

Language Overview

This section introduces some of the main concepts of the RoboEarth language
that are required for the remainder of this text. The language is implemented
in OWL, the Web Ontology Language, which is an XML-based format for
writing ontologies in Description Logics (DL).

1.1 Description Logics

Description logics are a family of logical languages for knowledge representa-
tion. There are several dialects with different expressiveness, most of which
are a decidable subset of first-order logic. An extensive overview can be found
in [1], a shorter introduction in [2]. Here, we will just briefly summarize the
main concepts. Table 1.1 gives an overview of the DL syntax.

Description Logics distinguish between terminological knowledge, the so-
called TBOX, and assertional knowledge, the ABOX. The TBOX contains
definitions of concepts, for example the concepts Action, Spatial Thing, PickingU-
pAnObject or TableKnife. These concepts are arranged in a hierarchy, a
so-called taxonomy, using subclass definitions that state for instance that a
TableKnife is a specialization of SilverwarePiece.

The ABOX contains individuals that belong to these concepts, e.g. knifel
as an instantiation of the concept TubleKnife. When modeling knowledge
in robotics, the ABOX usually describes perceived things: detected object
instances, observed actions, or perceived events. The TBOX, in contrast,
describes classes of objects or actions.

Note that the differences between ABOX and TBOX are not domain
specificness or environment dependency. There can be individuals in the
ABOX that are very general as well as very specific classes in the TBOX,
like the class of action “Grasping an egg from the refrigerator with the right
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hand using a pinch grasp”.

Roles can describe the properties of an individual, describe the relation
between two individuals, and can also be used in concept definitions to re-
strict the extent of a class to individuals having certain properties. For ex-
ample, the concept OpeningA Bottle can be described as a subclass of Open-
ingSomething with the restriction that the objectActedOn has to be some
instance of a Bottle.

OpeningABottle C OpeningSomething M Jobject ActedOn.Bottle

This kind of knowledge representation, consisting of a set of concepts
and relations between these concepts, is called an “ontology”. The knowl-
edge is formally represented and allows to draw conclusions using logical
inference. In terms of expressiveness, DL subsumes UML class diagrams
or entity-relationship models, two commonly used knowledge representation
formalisms.

1.2 Web Ontology Language

The RoboEarth language is implemented in the Web Ontology Language
(OWL), an XML-based language with direct correspondence to Description
Logict. Therefore, tools for reasoning on description logics can be used for
inference on OWL ontologies. The nomenclature in OWL and DL differ
slightly: “concepts” are usually called “classes” in OWL, “roles” are called
“properties”, and “individuals” are called “objects” or “instances”. The
following table compares the language constructs in DL and their correspon-
dences in OWL (taken from [2]).

OWL provides the language constructs to represent knowledge about a
domain, which is then encoded in terms of OWL ontologies. This can be of
course done at very different levels of abstraction: There are upper ontologies
that describe very abstract knowledge (e.g. general relations between actions,
agents and objects), and there are domain-specific extensions, for example
for household tasks or service robotics. The RoboEarth language is realized
as such a domain-specific extension of an existing ontology: It is derived from
the KnowRob ontology, a knowledge base describing the domain of household
robots, and extends it with elements that are specific to the exchange of
knowledge between robots. KnowRob itself is derived from the OpenCyc
ontology, a very broad upper ontology, and adds knowledge specific to service
robotics.

!The complete OWL reference can be found at http://www.w3.org/TR/owl-ref/
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OWL Syntax DL Syntax Example
Thing T
Nothing L
intersectionOf cin...ng, Human M Male
unionOf cCiu...ug, Doctor U Lawyer
complement Of -C —Male
oneOf {z1...2,,} {john,mary}
allValuesFrom Vr.C YhasChild.Doctor
someValuesFrom Fr.C JhasChild. Lawyer
hasValue Jr.x JeitizenOf.US A
minCardinality (< nr) (< 2hasChild)
maxCardinality (= nr) (< 1 hasChild)
inverseOf r hasChild~
subClassOf C, C Oy Human C Animal 1M Biped
equivalentClass CL =0y Man = Human M Male
subPropertyOf P CPR hasDaughter C hasChild
equivalentProperty P=5 cost = price
disjointWith Cy C =Cy Male C —Female
sameAs {z1} = {22} {Pres_Bush} = {GW _Bush}
differentFrom {z1} C ~{xz2} | {john} C —{peter}
TransitiveProperty Ptransitiverole | hasAncestor
FunctionalProperty TC(K1P) | TC(L lhasMother)
InverseFunctionalProperty | TC (< 1P7) | T C (< lisMotherOf™)
SymmetricProperty P=P 18S1blingO f = isSiblingO f~

Table 1.1: Language elements in OWL and DL syntax. C; are concepts, x;
are individuals, r,P; are roles, and n is a positive integer. Examples taken
from [2].

1.3 KnowRob knowledge processing system

The RoboEarth language builds upon the KnowRob? knowledge base [7] and
uses some of KnowRob’s reasoning capabilities. KnowRob is realized in a
very modularized way. A base system provides the common ontology and
reasoning methods and is largely independent of the domain of interest.
KnowRob is implemented in SWI Prolog using its Semantic Web library
for loading loading, storing and reasoning on the OWL ontologies. When
OWL files are loaded into the system, they are internally stored as triples
rdf(Subject, Predicate, Object) and can be accessed with special predicates,

2Available for download:
pkg/stacks/knowrob

http://tum-ros-pkg.svn.sourceforge.net /viewve /tum-ros-
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e.g. rdf_has(S, P, O). These predicates operate on the internal representation
that is created from the OWL files and handle properties like transitivity of
properties etc. On the other hand, Prolog is used as a programming language
to implement specialized reasoning modules and to interface the knowledge
base with external data.

Extension modules plug into the system and provide e.g. specialized
reasoning capabilities or interfaces to external data, e.g. to read object de-
tections from the vision system. These modules mainly operate on the level
of instances.

1.4 Links to external data

The RoboEarth language provides means to describe the semantics of the
exchanged data, though on a rather abstract level. For many applications,
however, there are already established and optimized file formats: Collada,
for instance, is a widely used format for describing kinematics. Other mod-
ules, like object recognition systems, will have their own file formats that
allow to efficiently store the required information. We try to keep these
data formats to ensure compatibility and to profit from existing tools. The
RoboEarth language thus allows to store links to these external data files. In
this case, the actual information (an object model, an occupancy grid map,
etc) is stored in an external file, and a description in the RoboEarth language
adds meta-information like prerequisites that are required to use the model.



Chapter 2

RoboEarth central ontology

RoboEarth is intended to be a large, distributed system that can be used
by various different robots, performing many different actions in very diverse
environments. In such a setting, it is impossible to predict all kinds of actions
or objects that need to be described. Instead, we need a flexible way to extend
the language to new application domains.

At the same time, it is important to have a common basic language that
describes the overall concepts (like the relations between actions, objects,
grasps, and trajectories) that is the same for all communicating partners.
Otherwise, a robot would not be able to understand a description it down-
loads from RoboEarth.

We therefore chose the following setup: A common central ontology de-
scribes the main concepts that are required. This ontology provides the
language elements described in this report and supports the reasoning capa-
bilities described in Section 4. This ontology can be extended by every user
as described in the following section.

2.1 Extending the ontology

Extending the ontology means to define new classes, properties, and relations
between classes in order to describe things that cannot be modeled with the
existing base ontology. These classes and properties should be derived from
the existing ones, so that a robot is able to link the new concepts to those it
already knows.

For example, assume a robot would like to provide a recipe for a special
kind of raisin cake, but there is only the general concept of BakedThing in
the ontology. It should thus create the concept of Cake and RaisinCake by
creating a sub-tree below Baked Thing. Further, it can describe the properties
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like “a RaisinCake is a sweet BakedThing that contains raisins”. With this
definition, another robot can use all its knowledge about BakedThing, and in
addition to that classify observed raisin cakes as RaisinCake based on their
properties.

These classes can be specified in the same OWL file that also describes
the recipe. That is, the file with the recipe also provides a definition of the
language used to describe the recipe. If a robot downloads the recipe, it
thus receives both the extended language description and the recipe, which
is describing actions using these new language elements.



Chapter 3

Representing action recipes in
the RoboEarth language

In this chapter, we will explain how the RoboEarth language can be used to
represent information on actions, objects, and the robot’s environment in a
way that robots can generate, exchange and use it. As a simple example,
let’s assume a robot has learned the task to navigate through an environment
and to recognize and localize a cup.

To exchange the “recipe“ for this action with another robot, it needs to
encode different kinds of information: Task descriptions like the actions the
task is composed of, how they need to be arranged, and which parameters are
to be chosen, are to be combined with information about the environment,
like a map for self-localization that may also describe where a suitable cup
has already been found, and finally a description of the cup so that a robot
that executes this action recipe knows it if has found the correct one. In the
following sections, we will describe how such information can be encoded.

3.1 Meta data

In addition to the descriptions of actions, objects, and the environment, the
language further needs to encode meta-data that is to help a robot assess
the information and select the right one. For example, if there are different
recipes for a task, the robot should have criteria to choose a good one. In
general, it should only download information that it can make use of, i.e. for
which it has the right prerequisites.

10
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3.1.1 Information on data creation

Information about the creator of a recipe, the creation time or the location
may be important for selecting a good recipe: If a very similar robot created
it, the likelihood that it will work will be higher. The older a map is, the
more likely it is outdated.

Related language constructs:

creationDateTime (Thing, xsd:dateTime)
createdBy(Thing, Thing)

3.1.2 Performance data

The number of times a recipe has been downloaded, the amount of successful
executions, or the kinds of robots it has been tried on are valuable pieces of
information when trying to select one recipe among several alternatives. So
far, the language only has basic support for this kind of information, but once
we gather experience which information is actually relevant, we will extend
these capabilities.

Related language constructs:

hasNumOfAttempts (PurposefulAction, xsd:positivelInteger)
hasNumOfSuccesses (PurposefulAction, xsd:positivelnteger)
hasSuccessProbability(PurposefulAction, xsd:double)

3.1.3 Units and coordinate systems

When using numeric data, it is important to know what these numbers de-
note, e.g. which units are used and which coordinate system spatial infor-
mation is described in. Without such information explicitly represented, all
the recipe interpretation would be based only on informal conventions. The
respective language constructs will be extended once the requirements of the
other work packages in terms of information that needs to be represented
have become clearer.

Related language constructs:

CoordinateSystem
CartesianCoordinateSystem
correspondingCoordinateSystem(PhysicalSituation, CoordinateSystem)

3.2 Tasks and Actions

This section describes how actions and tasks are modeled in the RoboEarth
language. There are two kinds of descriptions: recipes, i.e. general task

11
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descriptions that can be instantiated by executing them, and models of con-
crete, i.e. observed actions, which can for instance be used in log files. Re-
member that Description Logic, the formalism underlying the RoboEarth
language, distinguishes between terminological descriptions (TBOX) and as-
sertional knowledge (ABOX). The former describes classes, their relations
and properties, while the latter contains instances of these classes. In case
of actions, these instances may be

e actually observed or performed actions (something that happened at a
certain time)

e planned actions (something the robot intends to do)
e inferred actions (something the robot imagines that happens)
e asserted actions (some action someone told the robot has happened)

In contrast, the TBOX describes general information about classes of ac-
tions. These can be quite general classes like PuttingSomethingSomewhere,
or very specific ones like PuttingDinnerPlateInCenterOfPlacemat. However,
all these class specifications describe types of actions that, when they are ac-
tually executed, get instantiated to the corresponding actions in the ABOX.

3.2.1 Action classes

The RoboEarth ontology provides a taxonomic structure describing several
subclasses of Action:

* Action
* PurposefulAction
* Perceiving (similar to SensoryEvent, but in the action context)
* VoluntaryBodyMovement, e.g. Reaching or ReleasingGrasp (Movements that are
not directly manipulating an object)
* ActionOnObject (any kind of object interaction)
* ControllingSomething tap, electrical device, ...

HoldingAnObject (different grasps, no movement involved)
Movement-Translation picking up, putting down, or moving objects, walking, ...
RemovingSomething cleaning activities
OpeningSomething bottle, cupboard, drawer, ...
ClosingSomething bottle, cupboard, drawer, ...

* K X X ¥

There are many more and more detailed action classes available, and the
taxonomy can easily be extended. These action classes form the vocabulary
for describing the different kinds of actions the system knows. An overview
of most existing action classes can be found in the Appendix.

Each of these actions can be described by its properties: For instance,
one could state that every action of type Movement-TranslationEvent is a

12
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subclass of Action with the properties fromLocation, and toLocation set. This
description can be used to sort any instance of an action that has these
properties into the class Movement-TranslationEvent.

As an example, let’s have a look at the description of the class Putting-
SomethingSomewhere that corresponds to transporting an object from one
position to another. Obviously, this kind of action involves to pick up the
object, move to the goal position, and put the object down again. These
sub-actions are modeled in the following piece of code:

<owl:Class rdf:about="#PuttingSomethingSomewhere">

<rdfs:subClass0f rdf:resource="#Movement-TranslationEvent"/>
<rdfs:subClass0f rdf:resource="#TransportationEvent"/>

<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#subAction"/>
<owl:someValuesFrom rdf:resource="#PickingUpAnObject"/>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#subAction"/>
<owl:someValuesFrom rdf:resource="#CarryingWhileLocomoting"/>
</owl:Restriction>
</rdfs:subClass0f>

<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#subAction"/>
<owl:someValuesFrom rdf:resource="#PuttingDownAnObject"/>
</owl:Restriction>
</rdfs:subClass0f>

<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#orderingConstraints"/>
<owl:hasValue rdf:resource="#SubEventOrderingPuttingSomethingSomewherel"/>
</owl:Restriction>
</rdfs:subClass0f>
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="#orderingConstraints"/>
<owl:hasValue rdf:resource="#SubEventOrderingPuttingSomethingSomewhere2"/>
</owl:Restriction>
</rdfs:subClass0f>

</owl:Class>

Note that the ordering of the three subAction restrictions in the OWL
file does not have any meaning. In order to describe their allowed order-
ings, we need to add some constraints. These constraints are described as
follows. Unfortunately, the constraints cannot be checked automatically by
a description logic reasoner, which is unable to resolve the relations among

13
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sub-actions of a task due to limitations in the DL languages, but applications
need to verify themselves if they hold.

<PartialOrdering-Strict rdf:about="#SubEventOrderingPuttingSomethingSomewherel">
<occursBeforeInOrdering rdf:resource="#PickingUpAnObject"/>
<occursAfterInOrdering rdf:resource="#CarryingWhileLocomoting"/>
</PartialOrdering-Strict>

<PartialOrdering-Strict rdf:about="#SubEventOrderingPuttingSomethingSomewhere2">
<occursBeforeInOrdering rdf:resource="#CarryingWhileLocomoting"/>
<occursAfterInOrdering rdf:resource="#PuttingDownAnObject"/>
</PartialOrdering-Strict>

3.2.2 Composing actions to tasks

Complex robot tasks can be decomposed into primitive actions and move-
ments. If the sub-actions for lower-level actions are already modeled, tasks
can be described conveniently on a rather abstract level, like the already
mentioned PuttingSomethingSomewhere actions. The following code is an
excerpt of a plan for setting a table. The upper region describes the task
SetATable as a subclass of Action with a set of subActions.

<owl:Class rdf:about="#SetATable">
<rdfs:subClass0f rdf:resource="&knowrob;Action"/>
<rdfs:label rdf:datatype="&xsd;string">set a table</rdfs:label>
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="&knowrob;subEvents"/>
<owl:someValuesFrom rdf:resource="#PuttingSomethingSomewherel"/>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="&knowrob;subEvents"/>
<owl:someValuesFrom rdf:resource="#PuttingSomethingSomewhere2"/>
</owl:Restriction>

[...]

</owl:intersection0f>
</owl:Class>
</owl:equivalentClass>
</owl:Class>

<owl:Class rdf:about="#PuttingSomethingSomewherel">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Restriction>
<owl:onProperty rdf:resource="&knowrob;objectActedOn"/>
<owl:someValuesFrom rdf:resource="&knowrob;PlaceMat"/>

</owl:Restriction>

<owl:Class rdf:about="&knowrob;PuttingSomethingSomewhere"/>

<owl:Restriction>
<owl:onProperty rdf:resource="&knowrob;toLocation"/>
<owl:someValuesFrom rdf:resource="#Placel"/>

14
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</owl:Restriction>
</owl:intersection0f>
</owl:Class>
</owl:equivalentClass>
</owl:Class>

<owl:Class rdf:about="#Placel">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="&knowrob;inFrontOf-Generally"/>
<owl:someValuesFrom rdf:resource="&knowrob;Chair-PieceOfFurniture"/>
</owl:Restriction>
<owl:Class rdf:about="&knowrob;Place"/>
</owl:intersection0f>
</owl:Class>
</owl:equivalentClass>
</owl:Class>

[...]

The lower part shows how task-specific subclasses describe actions with
certain parameters. While setting a table, the robot may be told to put a
place mat in front of the chair. This command is translated into a class spec-
ification: a subclass of PuttingSomethingSomewhere actions with a PlaceMat
as objectActedOn and a toLocation Placel, which by itself is described as
some Place which is inFrontOf-Generally of some Chair-PieceOfFurniture.
The same mechanism can be used to describe other action parameters like
grasp types or trajectories.

The modeling of such tasks in the TBOX, i.e. using restrictions on the
properties of classes, may seem a bit clumsy at first glance, especially com-
pared to an ABOX model in which the properties of instances can directly
be asserted. However, it is necessary to describe action recipes on the TBOX
level since they are template-like action descriptions that are instantiated by
executing them. Even though the classes may be small (There may not be
a lot of actions where a place mat is positioned in front of a chair), they are
still classes of actions that comprise sets of action instances.

Figure 3.1 visualizes an action recipe that only lists some navigation ac-
tions to perform, namely two LinearVelocityCommands and two AngularVe-
locityCommands, including their ordering relations. This very simple recipe
was used for the demonstrator planned for the first RoboEarth workshop. A
robot was tele-operated by a human and created such a recipe describing the
performed actions. It uploaded the recipe to the RoboEarth knowledge base,
another robot downloaded the recipe and performed the actions.

Related language constructs:

orderingConstraints(Thing, MathematicalOrdering)

15
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#JoyStickDrive #LinVell
type: Class type: Class
subClassOf: Action subClassOf: LinearVelocityCommand
subActions: LinVeli linearVelocity: 0.0
s: AngVell duration: 434663
#AngVell - = .
orderingConstraints: SubActionOrderingJoystick1 SubActionOrderingJoystick1
orderingConstraints: SubActionOrderingJoystick2 type: Class . . .
subClassOf: AngularVelocityCommand type: PartialOrdering-Strict
angularVelocity: -2.0 occursBeforelnOrdering: LinVell
duration: 434663 occursAfterinOrdering: LinVel2
. X . #LinVel2
SubActionOrderingJoystick2
type: Class

type: PartialOrdering-Strict
occursBeforelnOrdering: AngVell
occursAfterinOrdering: AngVel2

subClassOf: LinearVelocityCommand
linearVelocity: -2.0
duration: 502496

#AngVel2

type: Class

subClassOf: AngularVelocityCommand
angularVelocity: 1.0

duration: 502496

Figure 3.1: Example action recipe. The block in the upper left defines the
action recipe including the sub-actions and ordering constraints. The blocks
on the right side visualize the four actions involved in the task and the partial
order imposed by the two ordering constraints.

subAction(Action, Action)

objectActedOn(Action, EnduringThing-Localized)
fromLocation(Movement-Translation, EnduringThing-Localized)
toLocation(Movement-Translation, EnduringThing-Localized)
primaryObjectMoving(ActionOnObject, EnduringThing-Localized)

after(TimePoint, TimePoint)
duration(TemporalThing, TimeInterval)

startTime (TemporallyExtendedThing, TimePoint)
endTime (TemporallyExtendedThing, TimePoint)
temporallySubsumes (TemporalThing, TemporalThing)

doneBy (Action, Agent-Generic)
bodyPartUsed (VoluntaryBodyMovement, AnimalBodyPart)

postureDuringMovement (Action, Posture-Configuration)
trajectory-Complete(Action, Trajectory)
trajectory-Arm(Action, ArmTrajectory)

3.2.3 Describing observed actions

Whenever the robot is reasoning on actually performed actions, either by
itself or by a human, it needs to describe action instances. These instances
can, for example, be generated by an action recognition system that interacts
with the knowledge base and populates the set of action instances based on
observations of humans. Based on these observations, the system can set

16
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parameters like the startTime, the objectActedOn, or the bodyPartUsed. For
more information, see [6] or [4].

3.3 Objects and Object Recognition Models

Three kinds of object-related information can be exchanged: Information
about the properties of object classes, descriptions how objects of types can
be detected by the robot, and information about concrete object instances
that were detected in an environment. Figure 3.2 illustrates the relation
between the different pieces of information: The bottom block describes the
object recognition model, the upper three blocks describe one object of type
Cup that has been perceived in the environment. More details on these
descriptions can be found in the next sections.

#Cup2342 #RoboEarthObjRecPerception_102 #rotationmatrix3d_17
type: Cup type: RoboEarthObjRecPerception

roboearthObjlD: 2342 <4— objectActedOn: #Cup2342 01 0 1.05
depthOfObject: 0.052 eventOccursAt: #rotationmatrix3d_17

widthOfObject: 0.052 startTime: #timepoint_1271159865 000 1
heightOfObject: 0.072 recognizedUsingModel: #0ObjModelWorkshop0710

#0bjModelWorkshop0710

type: RoboEarthObjRecModelPlanar
createdByAlgorithm: RoboEarthObjRecSystem
creationDateTime: 2010-07-08T14:39:00+02:00

linkToRecognitionModel: http://www.roboearth.org/data/workshop_environment.map
linkTolmageData: http://www.roboearth.org/data/workshop_objrec1.jpg
linkTolmageData: http://www.roboearth.org/data/workshop_objrec2.jpg
providesModelFor: Cup

providesModelFor: Plate

Figure 3.2: Description of an object recognition model (lower block) and the
detection of an object using that model (upper blocks).

3.3.1 Object classes

All object types are organized in a taxonomic structure, from very general
classes like SpatialThing to specific ones like Refrigerator-Freezer. A picture
of this taxonomy, containing most of the object classes currently present in
the RoboEarth language, can be found in the Appendix. The taxonomic
structure has the advantage that knowledge can be represented at different
levels of granularity: For instance, one could state that a Container can

17
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contain Spatial Things. Such a property will be inherited by all subclasses
and would need to be asserted only once.

Multiple inheritance reflects the different aspects of a class: For instance,
a MicrowaveQOuven is a FoodOrDrinkPreparationDevice, a kind of Ouven, and
also an FlectricalHouseholdAppliance, inheriting all properties of the respec-
tive class trees. This multi-faceted modeling is very important to capture
the complexity of real-world environments.

Classes are not only arranged in the taxonomic structure, but futher de-
scribed by properties, e.g. that the primary function of an Oven is Heating-
Food, and that it has a Handle as properPhysicalPart. If an object possesses
all required properties, it can be automatically classified as an instance of
the respective class. Properties are also arranged in a hierarchical structure,
as for example in the following list of language constructs (spatiallyRelated
is the super-property of connectedTo or topologicalRelations).

Related language constructs:

contains

mainColor0fObject

objectShapeType
typePrimaryFunction-StoragePlaceFor

spatiallyRelated
connectedTo
rotationallyConnectedTo
hingedTo
directionalRelations
aboveOf
behind-Generally
belowOf
inFront0f-Generally
toTheSideOf
toTheLeftOf
toTheRightOf
topologicalRelations
in-ContGeneric
on-Physical
inCenter0f
outsideOf

3.3.2 Object recognition models

Having only an OWL model that describes an object class, a robot is, in
general, not able to recognize this object. For this purpose, it needs more
detailed information that describes the object’s shape, texture, appearance,
or salient feature points and that can be used to parameterize an object
recognition system. These recognition models are, on the one hand, required
to perform an action, and are, on the other hand, something robots can
exchange.

18
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A recognition model has to be linked to both the object classes it allows
to recognize and to the recognition system that can load and use this model.
This information can be used by a robot to find out if it has the prerequisites
for using this model.

Since the recognition models can be quite large and complex, and since
the central RoboEarth knowledge base does not need to perform reasoning
on the details described in the model (for instance, some image feature de-
scriptors that do not serve any other purpose than recognition), we decided
not to convert the models completely into an OWL based format, but to
store them in the object recognition system’s binary format. This binary file
is then annotated in the OWL-based RoboEarth language so that automated
reasoning on the provided object classes, the prerequisites becomes possible.

Related language constructs:

createByAlgorithm
linkToRecognitionModel
linkToImageData

providesModelFor
recognizedUsingModel

3.3.3 Object instances

When a robot has explored an environment, it may want to exchange infor-
mation about the locations of objects it found. Other robots could profit
from that information to quickly find the respective items. These are con-
crete physical objects and therefore have to be described at the instance level
(ABOX).

A naive approach would be to add a property location that links an object
instance to a point in space or, more general, the homography pose matrix.
However, this approach is limited to describe either the current state of the
world or a static environment — one cannot express that the object states and
locations change over time. This is a strong limitation since robots need to
be able to describe past and (predicted) future states as well as hypothetical
effects of actions.

Such statements are not possible with this naive approach since OWL
only supports binary relations between exactly two entities. These relations
can only express if something is related or not, or if it has a property or
not. They cannot qualify these statements by saying that a relation held an
hour ago, or is supposed to hold with a certain probability. For this purpose,
we need an additional instance in between that links e.g. the object, the
location, the time, and the probability.
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In KnowRob, and thus also in the RoboEarth language, these links are
represented by the event that established them: the perception of an object,
an inference process, or the prediction of future states based on projection or
simulation (Figure 3.3. There can, of course, be multiple events assigned to
one object, corresponding to different detections over time. This represen-
tation allows to describe states that change over time, to perform reasoning
on the source of information, and handle contradicting statements, e.g. from
different perception modules. In the context of RoboEarth, such conflicts
could arise when the robot downloaded information that an object is at a
certain place, though it cannot find it there, but at a different location.

Figure 3.3: Visualization of the internal object representation. Based on
information from the vision system, KnowRob generates VisualPerception
instances that link the object instance icetea? to the different locations where
it is detected over time.
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All perceptions or inference results are represented as subclasses of Men-
talFvent, for instance VisualPerception or Reasoning. Most object recogni-
tion algorithms will be described as sub-classes in the VisualPerception tree.
KnowRob also provides predicates (holds(rel, T) and holds_tt(rel, [St, End]))
that operate on this representation and compute if a relation is true at a given
point in time.

Related language constructs:

Remembering
Reasoning
ThoughtExperimenting
Perceiving
TouchPerception
RFIDPerception
VisualPerception
SiftMatching
ShapeModelMatching

eventOccursAt
objectActedOn
startTime

3.4 Environment Maps

Environment information has been described in various ways in robotics, just
to name a few:

e Occupancy grid maps describe obstacles and free space in a grid-based
structure.

e Topological maps describe the environment as a graph in which the
vertices correspond to points of interest and the edges mean that one
vertex can be reached from an adjacent one.

e Point cloud maps describe the surface of the environment by a set of
points in 3D space.

e Object maps consist of localized, typed objects that have been recog-
nized in the environment.

e Maps of visual landmarks contain (often only visually distinctive, but
otherwise meaningless) points in space that can serve for localization.

With the RoboEarth language, we support all of these kinds of maps by
providing two ways to describe maps: The map can either be described as a
set of instances inside the OWL file, or as a link to an external (binary) file.
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The first approach is especially suited for those maps where logical reasoning
over the elements in the map is desired, may they be detected objects, walls,
doors or similar things. The second approach has advantages if the maps are
large and if no logical reasoning is required (e.g. point cloud or voxel-based
maps).

#cupboard2 #SemanticMapPerception16
type: Cupboard <«4— objectActedOn: #cupboard2
depthOfObject: 0.317 eventOccursAt: #rotmatrix3d_17
widthOfObject: 0.516 startTime: #timepoint_1271159865

heightOfObject: 0.873
describedInMap: #F360-Containers
properPhysicalParts: #door4 #rotmatrix3d_17

01 0 1.05

000 1

#F360-Containers

type: SemanticEnvironmentMap

createdByAlgorithm: IASSemanticObjectMappingSystem
creationDateTime: 2010-07-08T14:39:00+02:00
linkToMapFile: http://www.roboearth.org/data/workshop_environment.map

Figure 3.4: Encoding of an environment map that combines a binary file
(linked using the linkToMapFile property) with an object that was recognized
in the respective environment.

Both approaches can be combined: For example, an occupancy grid map
that serves for describing free space, localization and path planning, can
be combined with a set of objects and their positions in the environment,
as illustrated in Figure 3.4. The detected objects are represented by the
detection process as explained in Chapter 3.3.

In both cases, there is an owl file that describes the semantics of the
provided data, even if the map itself is stored as a binary file. This way, the
power of the RoboEarth language in terms of matching and reasoning can
also be applied to maps that are stored as separate files.

Related language constructs:

describedInMap
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linkToMapFile
createdByAlgorithm

MetricMap
ObjectMap
OccupancyGridMap
PointMap
LandmarkMap

TopologicalMap
LandmarkMap
ObjectMap

TwoDimensionalMap
ThreeDimensionalMap
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Chapter 4

Reasoning in the RoboEarth
Language

Since the RoboEarth language is implemented as a formal, logical language,
it allows for automated reasoning. The following sections give some example
applications that the recipes can be used for. These examples are meant to
give an intuition of what is possible with this language. They are currently
not implemented, but in some of the cases, very similar problems have been
solved with the KnowRob language (of which the RoboEarth language is
only an extension). In these cases, we provide a reference to a paper with
more detailed information.

4.1 Determining and retrieving missing in-
formation

For executing a recipe, the robot may need additional models and parameter-
izations like an environment map to navigate or object models to recognize
the objects that are mentioned in the recipe. It may also need additional
action recipes that provide a more fine-grained description of actions that
are only contained as atomic entities in a high-level recipe.

Using the RoboEarth language, the robot can recursively retrieve miss-
ing components while flexibly matching what it has and what is needed,
exploiting sub-class and super-class relations.
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4.2 Generating plans

The RoboEarth action recipes are not executable code, they need to be
interpreted in order to perform the described tasks. However, the abstract
task model can be used to generate code for the robot’s planning system.
This process comprises the following tasks:

e The abstract action descriptions need to be transformed into parame-
terizations of executable action routines.

e Descriptions of objects and locations have to be related to the robot’s
percepts (often referred to as the “grounding” problem).

e The planning system has to make sure that constraints defined in the
recipe are satisfied in the plan execution (e.g. a partial order or condi-
tional execution).

Most of these tasks are anything but trivial, [3] discusses some of the chal-
lenges and presents approaches to solve them. In RoboEarth, the execution
component developed as part of WP3 Labeling will be in charge of approach-
ing these issues.

4.3 Verifying action execution

The abstract action descriptions can not only be used both for generating
behavior [8], but also for recognizing actions [4]. Given a knowledge pro-
cessing system that is running on the robot and grounded in its perception
and action system, the recipe declarations can be used to verify if an action
has been performed correctly, and if not, which of the sub-actions failed [5].
KnowRob, for instance, can provide much of the needed information.

4.4 Generating more abstract or more spe-
cific representations

The RoboEarth ontology describes what sub-actions a task is composed of —
what can be used to either abstract a sequence of actions, that is described
with fine granularity, into a coarser-grained representation, or to transform a
coarse description into a detailed action sequence. One important application
would be to upload rather high-level task descriptions instead of very detailed
(and thus more likely hardware-dependent) ones. The other direction is
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needed when executing a recipe when the robot has to determine a sequence
of low-level actions based on an abstract, high-level specification.

In [4], the authors demonstrated the automated generation of more ab-
stract action descriptions on observed human actions described in the KnowRob
language. Human actions are even more complex to handle than most robot
actions, since the only available information is obtained from observation.
When recording action recipes, a robot does not have to rely on external
observation, but already knows what task it is performing, and can use this
information to better structure the recipe.

4.5 Merging recipes

If different robots upload action descriptions, there will probably be redun-
dant recipes: For instance, one robot may describe an action as “reach to-
wards the bottle, grasp the bottle, pick it up, move the gripper to a carrying
pose, move the base to a pose from which the desired position of the bottle
can be reached, put the bottle at that location, release the grasp, and retract
your hand”. The same task can be described as “pick up a bottle, move to
the destination, put down the bottle” or “transport the bottle to location
A”.

Using the action descriptions in the ontology and logical inference, the
system can detect that these descriptions describe the same task, though at
different levels of abstraction, and fuse them to one recipe. In addition to this
temporal (de)composition of actions, the system can also handle descriptions
at different levels of the class hierarchy: One robot may describe an action as
OpeningSomething, another one as the more specific OpeningAContainerAr-
tifact, and a third one talk about OpeningA Bottle.
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Appendix: Ontology overview
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Object ontology
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