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Figure 1: The verbal and non-verbal communication of this discussion is controlled with our proposed animation controlling component.

Abstract

In this paper we describe a layered approach to simplify character
animation in X3D. Therefore, we present an interface and control
language for specifying and synchronizing animations and similar
actions at a higher level. Because this requires to have the accor-
dant features on the lower X3D-based levels, we furthermore pro-
pose a set of nodes for realizing these demands. This includes for
instance an audio node for text-to-speech that automatically calcu-
lates the actual phonemes and weighting factors for the correspond-
ing visemes in order to achieve lip synchronization. To bridge the
gap between these layers we also propose nodes for controlling ani-
mations, which are capable to convert the scripted schedules, and to
mix an arbitrary number of interpolation based animations, whilst
still being extensible to new concepts of on-line motion generation.

CR Categories: H.5.1 [Information Interfaces and Presentation
(e.g., HCI)]: Multimedia Information Systems—Artificial, aug-
mented, and virtual realities; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Animation

Keywords: Humanoid Animation, Virtual Characters, Animation
Control and Synchronization, X3D

1 Introduction

In this paper we focus on defining and controlling humanoid an-
imation in the context of X3D. The humanoid animation compo-
nent (H-Anim) now is part of the X3D standard, and it not only
provides a well defined structure of humanoid figures but also sup-
port for character animation based on predefined data. For simple
scenarios H-Anim works well, but if multiple animations shall be
combined and concatenated dynamically during run-time, the appli-
cation soon gets unmanageable, because of increasing complexity
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and the missing support for mixing and synchronizing animations.

Not only in the field of X3D but also in general, animating and
rendering virtual characters still has a lot of challenges. First, the
methods should be easy to use and integrate into different applica-
tions. Second, to have a flexible control of the character requires
a flexible animation system including body movements (gestures,
walking) and speech (TTS, mimics). Then, visual realism means
to have realistic models, natural gestures and a realistic simulation
of materials. Finally, for interactive systems, everything has to be
done in real-time, because in typical applications, like game sce-
narios and embodied conversational agents for entertainment and
education, the interface must react immediately to user input.

Thus, for doing convincing character animation in complex and re-
sponsive environments, means for incorporating blending of differ-
ent animations like waving and turning around at one single time
step are needed, which cannot be accomplished with current X3D
concepts. The same goes for cross-fading different succeeding ani-
mations in order to alleviate jerky leaps between e.g. an idle motion
and a subsequent gesture. This gets even more complicated, if mo-
tions from a physics simulation or an IK system, which besides this
both need some knowledge of the given scene, also shall be incor-
porated. But currently for instance neither the exchange schema
Collada nor X3D support such advanced interaction and animation
methods. Moreover, if a virtual character also shall speak, the sit-
uation is even worse. Because X3D does not provide support for
text-to-speech, all spoken texts have to be prepared in advance, and
– after having determined the lengths of all phonemes – put in syn-
chronization with the corresponding visemes somehow.

Another aspect concerns the flexible and powerful control of the
behavior of virtual characters, including the ability to implement
and author story-lines. In movies, virtual characters are used that
are almost life-like, but which have completely scripted actions. In
games, characters can be autonomous, but the interaction with them
is unnatural and limited to pre-programmed commands and behav-
iors. If an H-Anim figure within X3D shall be modeled with more
advanced behavior like a set of skills and typical actions, this needs
to be done externally by using Java, what mostly not only means
slow value updates and multiple data storage, but often also to rein-
vent the wheel. By providing an additional layer on top of H-Anim
for scripting and synchronizing animations and other motions based
on our proposed animation control mechanism, a lot of complexity
can be avoided, and the application developer can concentrate on
the story and scene development itself.



Therefore a higher level of abstraction is needed, which will be de-
scribed by an additional control language. It provides an abstract
layer to the graphics environment and its usage is also suitable for
non-graphics experts. It therefore allows controlling character be-
havior and emotional states in any desired temporal order by re-
searchers in other areas like artificial intelligence or story-telling.
The XML-based control language PML is based on concepts taken
from RRL [Piwek et al. 2002], and originally was designed as a rep-
resentation and interface language between other engines like for
instance a dialog and an affect engine [Klesen and Gebhard 2007]
on the one hand, and X3D on the other hand. Thus, it must be able
to specify the properties and the behaviors of characters and objects
in a 3D virtual environment independently from their realization in
a concrete setting. Although PML focuses on the specification of
behaviors of virtual characters it also contains elements to specify
and coordinate the presentation of other scene elements over time.

This paper is organized as follows: First, in section 2, related work
is discussed. In chapter 3 we then show, how character animation
currently is done with X3D, and how this often rather tedious pro-
cess can be further improved. Thus, in chapter 4 and 5, some exten-
sions to the current standard to meet these demands are presented.
Finally, application examples are discussed in section 6, and con-
clusions and directions for future work are given in section 7.

2 Related Work

The great advancements in real-time virtual character simulation
on the one hand and the need for higher level interfaces that al-
low a more abstract definition and control of object behavior on
the other hand both call for better mechanisms of animation control
and scheduling in real-time frameworks and middle ware solutions
that aim at exposing suitable components for an easy and fast ap-
plication development. Although for one thing there already exists
a wide variety of commercially available real-time 3D frameworks
and game engines, often including powerful level editors, they are
neither cheap nor standardized. For another there are many free or
open source toolkits and frameworks targeting at advanced charac-
ter simulation, like VHD++ [Ponder et al. 2003], as well as at story-
telling, like Facade [Mateas and Stern 2003], but – if standardized
formats are used at all – then mostly only for data exchange but
not for defining the run-time behavior. Besides this, application de-
velopment still affords programming a C++ or similar API, and is
therefore not accessible for non-programmers.

By introducing the humanoid animation component (H-Anim) in
X3D [Web3DConsortium 2005; Web3DConsortium 2007], some
of these problems were intended to overcome by specifying the
structure and manipulation of articulated, animated, and human-
like characters. However, script nodes and prototyping mechanisms
are the only possibilities to achieve some kind of behavior within
X3D. This gets even worse for H-Anim figures, which usually are
animated with different sets of interpolator nodes storing all key-
frames and the corresponding, often dynamically created routes for
updating the joint transformations every frame. This not only leads
to lots of data, which has to be managed, but also requires the ap-
plication developer to think about well designed prototypes for hid-
ing and encapsulating the data and routing complexity in order to
keep the application manageable. This concept basically has not
changed over the last decade [Babski and Thalmann 2000; Week-
ley et al. 2007], is still labor intense and affords programming skills.
Thus, in [Walczak et al. 2006] a method for authoring scenes in the
context of networked educational systems, by means of a content
production database, a VR modeling language, and so-called VR-
Beans for modeling geometry and behavior, was proposed.

The general lack of a unified description for behavior and inter-

actions in current 3D technology with special regards to X3D is
discussed in [Dachselt and Rukzio 2003]. Here the authors pro-
pose their ”Behavior3D” concept, which amongst others provides
(based on ideas taken from SMIL 2.0) so-called ”TimeContainer”
nodes that can have a sequential and a parallel realization in order
to overcome certain shortcomings in defining complex animations
by supporting better means for synchronization. Likewise a similar
time graph structure for X3D was proposed in [Göbel et al. 2004],
but it turned out to be hardly extensible concerning more complex
setups, albeit advanced temporal control already is integrated into
standards like MPEG-4 [Preda and Preteux 2004].

In [Buttussi et al. 2006] the authors are especially trying to sim-
plify the process of modeling skeleton based humanoid animation
for creating sign language animations by proposing a visual mod-
eling tool, where complex animations are created from sequences
of simple animations by building a linear transition between them.
This leads to acceptable results, if the motions are not too different
and no penetrations occur. To alleviate this, research lately has fo-
cused on motion generation based on motion graphs [Kovar et al.
2002; Lee et al. 2002], which are directed graphs where all edges
correspond to motion fragments taken from motion capture data in
order to obtain realistic human motion including the subtle details
of human movement, which are not present in procedurally gener-
ated motions via e.g. inverse kinematics (IK) [Tolani et al. 2000].

Motion synthesis is done via graph walks that require a certain con-
nectivity, which is not given per se, because usually no two motion
fragments are sufficiently similar. Therefore transition motions that
seamlessly connect two motion fragments have to be created and a
set of candidate transition points have to be detected. Additionally
an animation controller is needed that assembles motion fragments
based on the current state and input. Although these methods lead
to convincing results, even for on-line motion generation in game
scenarios, they still require preprocessing, manual work, are com-
putational expensive and high memory consumption is still an issue
[McCann and Pollard 2007]. Complementary to the motion graph
approach are parameterizable motions, where the focus lies on gen-
erating parameterizations of example motions such as walking, jog-
ging, and running [Park et al. 2002; Park et al. 2004], but which also
still have to deal with the same problems mentioned previously.

For developing interactive virtual humans not only the geometric
model and some basic ways of animating it have to be taken into
account, but also aspects belonging to different levels of abstrac-
tion. These range from the shape, as well as key-framed or per joint
based kinematics as defined by the H-Anim specification on the
one hand, over physical aspects [Shapiro et al. 2003] like rag-doll
simulation, hair simulation or tissue deformation, up to simple be-
havior like idle behavior, and finally to an AI driven cognitive layer
for handling communication, personality, etc. on the other hand.
Because developers have to write many lines of code related to all
layers of this hierarchy, which easily gets rather unmanageable for
more complex applications, in [Ieronutti and Chittaro 2005] the au-
thors propose a generic, layered software architecture that allows to
focus on the behavioral aspects, whilst providing animation models
that also include collision detection and path planning.

Behavior definition usually is done with the help of authoring tools
or by using scripting languages, as in the system proposed by [del
Puy Carretero et al. 2005]. Here the authors use VHML [Marri-
ott 2001], a language that was designed to specify the behavior of
virtual characters in multimedia applications, and which consists
of several sub-languages for describing the character, its gestures,
emotions, etc. But such languages and behavior models are mostly
highly domain specific and incorporate semantic models. A com-
parison of common markup languages for scripting and represent-
ing virtual characters can be found in [Arafa et al. 2003]. A more re-



cent framework for behavior generation is proposed in [Kopp et al.
2006]. In this work a first specification of the communicative be-
havior markup language (BML) for mediating between a behavior
planning and a behavior realization module is introduced. BML de-
fines behavior elements like gestures and facial expressions and also
allows to specify temporal constraints for ensuring temporal align-
ment. By defining an additional dictionary of behavior descriptions
the representation language distinguishes between a more abstract
behavior definition and its concrete realization.

In [Yang et al. 2005] a VRML based system consisting of three
layers for animating characters is described. Whereas the lowest
layer controls the joints, the middle layer combines a predefined
schedule and different joint transformations to skills like ”walk” or
”open door”. It was shown that a Java3D based implementation not
only was faster than a VRML/ Java version but also easier to imple-
ment. The highest level was an English-like scripting language for
expressing the composition of skills and for hiding the complexity
of lower layers. A similar approach is proposed in [Huang et al.
2003], although in this work the authors use their scripting lan-
guage already for composing primitive motions based on operators
like ’repeat’, ’choice’, ’seq’ and ’par’.

What is common to all approaches is the fact, that some advanced
mechanism for animation control is needed, often with different
levels of abstraction for reducing complexity and ensuring porta-
bility, in contrast to the simple event triggered mechanisms as pro-
vided by X3D. Besides this, if multiple animations shall be com-
bined and displayed, a more advanced mechanism beyond ”Script”
and ”TimeSensor” nodes for scripting and synchronizing all char-
acter actions is also needed, what usually is accomplished by means
of a scripting language suitable for the corresponding domain, like
scripting dance or verbal and non-verbal communication.

3 Analysis and Layer Design

The original H-Anim standard only defines the skeleton setup (with
different levels of articulation), consisting of the rigid segments and
joints that are needed to build up a humanoid. Standard VRML or
later X3D animation techniques, mainly timers and simple linear
interpolators, have been used to change e.g. the joint rotations over
time. Later a simple but efficient skins and bones refinement of this
ISO standard [Web3DConsortium 2005] also introduced seamless
skinning. However, the definition and handling of dynamic changes
have never been part of the H-Anim standard. The animation data
itself is stored in X3D interpolators; one interpolator per joint, and
the data flow is defined via X3D routes.

As already mentioned, for simple scenarios, like a single animation
to be played, H-Anim/ X3D works well, but it is hard to use in cases
where multiple animation sets are available, which are combined
and concatenated dynamically during run-time. The overall struc-
ture of such an application gets unmanageable and confusing be-
cause of the vast amount of nodes, routes and missing information
about membership to specific information. Tracing and debugging
is almost impossible, especially when routes are created and deleted
during run-time to blend animations together in scripts. However,
for realistic scenarios this gets even more complex, because the var-
ious types of dynamics concerning humanoids is a very important
part and occurs in different ways. The most obvious are the charac-
ter’s movements, like gestures and locomotion. But also hair is not
static and must be simulated to achieve high visual realism. Gener-
ally spoken, two types of approaches can be distinguished, the play
back of predefined animation data on the one hand, and the on-line
computation of animation data on the other hand.

In order to combine and concatenate animations efficiently, as e.g.
needed for simulating the communication between different virtual

Figure 2: Layers of complexity (X3D/ H-Anim covers gray parts,
whereas parts depicted in light gray should be covered, too).

characters and a user as shown in the images in Figure 3, addi-
tional information about the animations is also needed, like data
look-ahead and a list of active animations and animations that will
be activated within the next time-frame, which X3D does not pro-
vide. To alleviate these drawbacks we have designed animation
storage nodes that provide a consistent view on an animation set.
Furthermore, to provide a consistent and transparent interface for
the application developer we have developed a centralized control
component for animations and related actions that is explained in
detail later. The proposed animation controller component addi-
tionally provides an interface for scripting and scheduling different
types of actions and animations for encapsulating simple behavior,
and thus for reducing the complexity of application development.

As can be seen in Figure 2, there is a hierarchy of different levels
of abstraction concerning modeling virtual characters. The lower
levels only deal with geometry, appearance, and the way, joints and
vertices can be transformed, whilst the upper levels deal with in-
stinctive behavior as well as cognition. Somewhere in between is
physics, ranging from rigid body physics over hair and cloth sim-
ulation to the simulation of complex materials like skin. X3D pro-
vides some support for both lower layers, but there is no support
for the upper ones. Whereas cognition belongs to the field of AI,
autonomous or scripted behavior should at least partially be han-
dled by the X3D browser. An example here is the more or less
unconscious idle behavior – like blinking with the eyes, or moving
slightly around. Idle behavior is displayed in between when no spe-
cific actions happen, because it looks quite unrealistic, if a character
stands absolutely still. Thus, the X3D runtime needs knowledge of
these animations as well, because if suddenly an intentional action
shall be executed, the idle animations can not simply be stopped but
have to be blended over into the new animations to avoid artifacts.

By using the animation controlling extension, which is explained
in section 5.2, not only scripting but also mixing of animations
can be easily done in X3D, provided that they are given as rigid
body motions. But there are still some issues, that have to be kept
in mind when simply mixing animations, mainly due to unsuitable
animation data and missing transition animations. If e.g. the spa-
tial distances between the first and the last animation frame are too
big, this either leads to jerks or to sliding effects, depending on the
blending parameters, which in the latter case introduce damping
effects, if too many time steps are averaged. Thus, pre-recorded
animation must be planned accurately. It should be defined, which
is the starting and which is the ending pose, as well as which joints
are involved. Because blending between very different poses often
leads to unsatisfactory artifacts, it thus should be avoided.



Figure 3: Animated characters and a photo from the CeBIT trade fair that shows an application based on our animation framework.

4 The Control Layer

Similar to the additional programming languages needed for
”Script” and ”Shader” nodes, a domain specific language is intro-
duced for animations. Besides, when animating and visualizing vir-
tual characters one also has to think about interoperability aspects.
Thus, especially in web environments, it should be possible to spec-
ify the properties and behaviors of characters and objects in a vir-
tual environment independently from their realization in a concrete
setting, whilst still being able to provide detailed information like
the required animation parameters and exact timing information.
Therefore the Player Markup Language (PML) was developed cor-
porately; see [Klesen and Gebhard 2007; Jung and Knöpfle 2007]
for an in-depth discussion and application examples. PML is an
XML-based high level markup language for scripting the proposed
animation control component, and thus comparable to a ”Script” or
”Shader” node, as it is a domain specific language to extend the cur-
rent X3D concept. Additionally, it is designed to be independent of
the implementation of a graphics engine and virtual environment,
and hence can either be used as descriptive interface markup lan-
guage between a graphics engine and some higher level behavior
and dialog generation engines, or for directly scripting animations.

Because PML is a language for controlling virtual environments
with special regards to character animation and user interaction,
it defines a format for sending appropriate commands. Addition-
ally, it defines a message format, which can be sent to the anima-
tion control component or received from it for enabling interactions
with the scene via <message> and <query> scripts. At the be-
ginning of a new scene all objects and characters are defined by a
<definitions> script. There exist three types of definitions:
repository definitions, character definitions, and object definitions.
Repository definitions specify where the resources for the various
scene elements are located. Character definitions specify the acous-
tic parameters of the synthetic voice, the available animations in-
cluding their default durations, the phoneme to viseme mapping to
be used, etc. (a short example that defines a list of idle animations
is shown next). Likewise object definitions are used to specify cam-
eras, user interface elements, and various media types that will be
used in the scenario. Each such element has a unique ’id’ by which
it can be referenced via the ’refId’ attribute in other elements.

<definitions id="iListDef">

<character id="Valerie" src="Valerie.wrl">

<multiPoses id="a" src="a.wrl" dur="2350"/>

<multiPoses id="b" src="b.wrl" dur="2533"/>

<idlePoses id="iP" random="true">

<multiPoses refId="a" dur="2350"/>

<multiPoses refId="b" dur="2533"/>

</idlePoses>

</character>

</definitions>

In the course of the story all runtime dependent actions like char-

acter animations are described by so-called <actions> scripts,
whereas the temporal order is given by a special scheduling block
including sequential and parallel elements. Actions are used to
specify the appearance and behavior of all characters and objects in
the environment. Some actions like ’show’, ’hide’, ’transform’, or
’startIdleList’ can be applied to both, characters and objects, while
others are only available for specific scene elements. Below a short
example script is shown, in which the previously defined idle list
is started. Examples of actions that are only available for virtual
characters are ’speak’ for verbal output, and ’complexion’ for the
change in skin color (like blushing and pallor). A PML message is
used to control the execution of actions and to exchange informa-
tion between modules. There are three different types of messages:
commands, states, and facts. Commands can be used to trigger
the execution of actions; states are used to inform other modules
about the execution state, e.g. started, failed, finished, what is im-
portant for later synchronization; and facts, which are represented
by attribute-value pairs, can be used to inform about user actions.
Finally, a query can be used for retrieving scene information.

<actions id="iListStart" start="true">

<character refId="Valerie">

<startIdleList id="iL" refId="iP" />

</character>

<schedule>

<action refId="iL" begin="0" dur="0"/>

</schedule>

</actions>

The animation tags of a PML actions script can either refer to
preloaded animations, which are referenced by their name, or to
simulated animations, e.g. via inverse kinematics. Different kinds
of animations like morph targets and displacers for facial animation
(<singlePose>), or key-frame animations (<multiPoses>)
and simulated animations (<implicitPose>) for gestures and
postures are distinguished, because every animation type must be
handled differently and has a varying set of attributes. An exam-
ple of a rather unusual animation which can be handled quite easily
this way, too, is the change of the face complexion. Usually only
the changes in geometry by means of displacers or morph targets
are addressed in computer graphics. This is a well known problem,
and the classification usually is based on the FACS [Ekman 1982],
which identifies certain Action Units for morphing the face geome-
try. But with the help of modern graphics hardware the more subtle
changes concerning face coloring can also be covered via animated
skin textures or shader programs (see Figure 6, left).

By introducing a more abstract mechanism to define and synchro-
nize different kinds of animations without having to take care about
correct routing, timing etc., it is also much easier to create dig-
ital stories with embodied conversational agents in X3D. Such a
story can be described with PML by putting together story-lines,
i.e. short scene acts, in an easy and intuitive way through PML
scripts that define when and what a character or object in the scene



Figure 4: A rare but essential additional use-case: Utilizing SAI to
send PML chunks during runtime to the animation controller.

is doing. By combining this with other script or sensor nodes that
define when and how the user can interact with the virtual environ-
ment there can also be added some non-linearity and possibilities
for user interaction in order to create an interesting story graph.
Figure 4 shows a possible system setup. As can be seen, PML
can either be used for scripting and synchronizing within the X3D
browser, or for handling the communication with modules that do
not want to bother with problems concerning low level kinematics.

5 The Execution Layer

5.1 Essential Scene Graph Nodes

For the implementation we have used the InstantReality framework
[Avalon 2008] that utilizes OpenSG [OpenSG 2008] for rendering.

5.1.1 Dynamic Gestures

Capturing and processing motion data is a tedious and time con-
suming task. To increase flexibility a better solution is to automat-
ically generate animation data. Furthermore, there are animations
whose appearance is not known upfront because they depend on
external parameters. Examples are pointing gestures, where the di-
rection is calculated during runtime (e.g. pointing towards a mov-
ing object), and character locomotion, where the target is defined
during runtime (”go to door”). As can be seen, procedural anima-
tions like these need information about the scene: ”go to A”, ”look
at B”, etc. implies having knowledge of A or B. By using external
modules for the computation, in dynamic worlds this denotes high
latency and unnecessary communication overhead, especially when
taking animated terrain or other moving targets into account, and in
static scenes it means at least keeping data twice, like for instance
for path planning. Therefore built-in support for inverse kinematics
would help to alleviate these drawbacks.

But currently the only built-in way of animating humanoids within
X3D is via keyframing, although the H-Anim component already
contains a node, the HAnimSite, that can be used to generate an-
other type of animation, and which generally can serve three pur-
poses: It defines an ’end effector’ location, which can be used by
an inverse kinematics system (but without specifying the animation
itself and how it could be triggered), an attachment point for acces-
sories, and a location for a virtual camera. But only defining the
position of an end effector in the given reference frame usually is
not enough for fully parameterizing an IK system, and also doesn’t
provide enough information about the targets of the motion to be
calculated. For example a simple ’lookAt’ gesture requires knowl-
edge of the target at which to look at, but that target (e.g. the eyes of
another character) in general is not part of the humanoid. Therefore
we propose the HAnimIKSite node for explicitly handling inverse
kinematics within X3D. Its interface is shown below (fields already
defined in the HAnimSite node are omitted for clarity).

The SFFloat field ’fraction’ can be set (e.g. by a TimeSensor) to

Figure 5: The boxman is aiming at the green sphere via the HAn-
imIKSite node – the resulting motion is denoted by the red arrow.

values between 0 (start) and 1 (end) to animate the avatar. The ’tar-
get’ field defines the position of the target to aim at or to touch in
world coordinates. Usually the translation of a Transform node is
taken here (symbolized by the green sphere in Fig. 5). If the target
should not be aimed with the center of the parent joint of the HAn-
imIKSite (maybe to define a point lying between the eyes or in the
hand), then a translation/ rotation of the end effector can be defined
via the ’aimingTranslation’/ ’aimingRotation’ field. The length of
the kinematic chain is defined by the ’numJoints’ field. The value
of the ’motionPathTension’ field has to be between -1 and 1, and
defines the tension of the motion path in the sense of the Kochanek-
Bartels spline tension parameter. The ’motionPathShape’ field de-
termines the shape of the motion path, currently valid values can be
”auto”, ”quadratic”, and ”cubic”. The ’minTurnAngle’ defines the
minimal angle a target has to be away in order that the torso turns,
and ’maxTurnAngle’ defines the maximal angle the torso can turn.

HAnimIKSite : HAnimSite {

SFFloat [in, out] fraction 0

SFVec3f [in, out] target 0 0 0

SFRotation [in, out] targetRotation 0 0 0 1

SFVec3f [in, out] aimingTranslation 0 0 0

SFRotation [in, out] aimingRotation 0 0 0 1

SFInt32 [in, out] numJoints 3

SFFloat [in, out] motionPathTension -0.4

SFString [in, out] motionPathShape "auto"

SFFloat [in, out] minTurnAngle 0.2

SFFloat [in, out] maxTurnAngle 1.5

SFFloat [in, out] turnFactor 0.6

}

5.1.2 Locomotion Generation

In this paragraph we will focus exemplarily on walking. Basically
there exist two types of approaches for automatic generation of lo-
comotion. Whereas the first one tries to simulate the physiology of
the human body using kinematics, other approaches adapt captured
animation data according to external parameters, e.g. interpolating
between walking and running to attain jogging. Here the complex-
ity concerning biomechanical constraints is lower, because origi-
nalities of human walking are already defined in the animation sets,
but they need motion data upfront. A promising approach we have
implemented was the one described by [Park et al. 2004], which
synthesis animation data from previously captured animation data
according to different parameters, e.g. mood of character and style
of walking. In a first step one has to pre-process the motion data
and create animation sequences, which consist of one walking cy-
cle with fixed speed, angle and mood. To walk on a given path or
towards a specified target the sequences are automatically concate-
nated in our control component during runtime, and interpolated
according to the input field values given by the application.

5.1.3 Hair and Skin Simulation

Besides motions that usually are consciously controlled like walk-
ing there are also other ones, which can’t be controlled explicitly,



Figure 6: Left: A woman crying and blushing. Right: Some frames
taken from our real-time hair simulation with special hair shader.

like blushing, tears running down a face, or the motion of hair when
moving the head (as shown in Figure 6), but which also have to
be simulated in order to create convincing virtual humans. Thus,
means for realistic skin rendering also have to be provided. Addi-
tionally, we have also implemented nodes for doing hair simulation
and rendering, which are described in [Jung and Knöpfle 2007].
The simulation is based on a kinematic multi-body chain, whose
nodes are defined by the vertices of the original hair mesh that con-
sists of many quad strips. Two node types are distinguished here:
Anchor nodes are connected to the scalp, whereas all other vertices
in the chain are free moving, due to external forces like gravity,
length conservation, or the force resulting from turning the head
(i.e. transforming the joint hierarchy above the hair mesh).

5.1.4 Speech Synthesis

Depending on the application different behaviors are required
for animating virtual humans. When using e.g. conversational
agents, interpersonal communication and therefore facial expres-
sions, speech, and at least some sort of lip synchronization are cru-
cial. In X3D based applications speech synthesis usually is done
externally and the facial animation is updated and controlled via
Java and the EAI. But this not only leads to latency but also affords
a lot of complexity concerning scripting and scene design. Hence
we propose an AudioTTS node, which is a text-to-speech (TTS)
node that can be referenced by Sound nodes instead of an AudioClip
node. The AudioTTS transforms written text to audio data by using
a synthetic computer voice. The SFNode field ’voice’ contains a
Voice node, which describes the synthetic voice. The Voice node
defines the parameters of computer generated voices. The ’name’
field contains the name of the voice that corresponds to the voices,
which are installed on the computer. If no name is given, the de-
fault voice is used. The ’gender’ field determines the gender of the
voice, possible values are ”auto”, ”male” and ”female”, whereas the
’age’ field determines the age of the voice, valid entries are ”auto”,
”child”, ”teen”, ”adult” and ”senior”. The ’language’ field finally
controls the language of the voice (e.g. ”en” for english or ”de” for
german; if not given the default language is used).

The SFString field ’text’ of the AudioTTS node contains the text
that gets spoken by that voice. Besides creating the audio data, this
node can also provide weights to morph between different geome-
tries (the morph targets). This can be used to animate the lips of
avatars by mapping the resulting phonemes to their corresponding
visemes. Therefore the ’visemeKey’ field is used: If for instance the
viseme ”a” is represented by the first geometry, an ”a” is put at in-
dex 0 of this field, etc. The ’weights changed’ outslot provides the
weights for the different geometries used to create the final geome-
try. Usually, there is one geometry for each viseme provided by the
text-to-speech system. For each geometry, one weight is calculated,
whereas the sum of all weights is 1. After that, all geometries are
multiplied with their respective weight and summed up. The result
is an animation of the lips that is synchronous to the speech. The
value of ’visemeDurationScale’ determines how long the visemes

Figure 7: Talking head, using AudioTTS and CoordinateMorpher.

are displayed during the animation. By default the value is 0.5,
which means that half of the time the current viseme is displayed, a
quarter of the time is used to interpolate from the previous viseme
to the current viseme, and a quarter of the time is used to interpolate
from the current viseme to the next viseme. The ’autoSilentIndex’
is the index of the silent or neutral geometry. When this field is
non-negative, the node ensures that the corresponding geometry is
shown at the end of the animation sequence.

AudioTTS : X3DSoundSourceNode {

SFString [in, out] text ""

MFFloat [out] weights_changed

MFString [] visemeKey []

MFFloat [] weightValue []

SFNode [] voice NULL

SFFloat [in, out] visemeDurationScale 0.5

SFInt32 [in, out] autoSilentIndex -1

}

Voice : X3DSoundNode {

SFString [] name ""

SFString [] gender "auto"

SFString [] age "auto"

SFString [] language ""

}

5.1.5 Facial Animation

As already stated, the AudioTTS node not only synthesizes speech,
but also determines the resulting list of phonemes including the du-
ration of every phoneme, and it also calculates the weights for the
different visemes (as shown in Fig. 7). These weights can be used in
two ways, either for animating the skin with the help of HAnimDis-
placer nodes or by directly morphing the mesh, as is explained next.
HAnimDisplacer nodes are usually used to control the shape of the
face. Each HAnimDisplacer specifies a morph target that can be
used to modify the displacement properties of the corresponding
vertices. The scalar magnitude of the displacement is given by the
’weight’ field and can be dynamically driven by an interpolator or a
script. The mesh therefore can be morphed smoothly using the base
mesh and a linear combination of all sets of displacement vectors.

Quite similar to the displacer node is the CoordinateMorpher node,
another model-free approach for doing animations that was first
proposed in [Alexa et al. 2000]. Assume you want to animate a
face, and you have given n target states of your modeled face, a
neutral one, and n − 1 other ones, e.g. a smiling one, one with
open and one with closed eyes, one with raised eyebrows, and the
other ones for representing the phonemes. The morpher node now
regards each of these states as a base vector of an n dimensional
space spanning all possible combinations of mesh deformations. In
order to get valid linear combinations the coefficients (weights) of
all morph targets must sum up to 1. For interpolating between dif-
ferent states additionally a VectorInterpolator node was introduced,
because for each key time a vector of n key values is needed here.
Unlike the HAnimDisplacer the morpher node is also suitable for



animating a talking head or other objects not compliant to H-Anim.
Additionally a NormalMorpher was defined here that linearly in-
terpolates among the set of normals – something that is still not
defined in the X3D specification for displacer nodes.

When using the X3D AudioClip node it is certainly also possible
to generate animated speech by preparing all spoken texts in ad-
vance or via some external modules. But if lip sync is needed,
first the lengths of all phonemes (usually provided by the TTS sys-
tem, too) have to be determined, before they can be synchronized
with the corresponding face displacements. Because a good viseme
mapping is complicated, and within the X3D framework decoupled
from the ’spoken’ phonemes, a mechanism that is less error prone
and easier to use has to be incorporated, because precise synchro-
nization and scheduling is needed for simulating virtual characters.
Thus, the proposed animation controller component, which is de-
scribed in the next section, is also capable of synchronizing the
computer voice with the corresponding face animations. Moreover,
they are automatically combined with other morph targets (e.g. for
displaying the emotional state), which are active at the same time.

5.2 Scheduling and Controlling Animations

5.2.1 Connecting the Layers

After having explained the high level language PML, and the low
level extensions described above, the question remains, how this
advanced animation control approach can be used in concrete set-
tings. Thus, a generic scheduling and controlling element is needed,
too. Therefore, we added some additional nodes, whose X3D inter-
faces are shown next. Figure 8 shows an overview of the proposed
system architecture. Here, the TimelineComposer node is respon-
sible for all scheduling and also deals as the PML interface and
processor. Starting and stopping of animations and other actions
is accomplished by setting the ’command’ string of the Timeline-
Composer node with a valid PML file or string for defining the
desired temporal order. This is similar in spirit to the ’url’ field of
a Shader node, which only is useful when having defined a valid
GLSL or Cg shader program, or the ’url’ field of a Script node,
which only is useful when having defined some Java or JavaScript
code. Alternatively one could also think of defining the temporal
order and triggering the corresponding actions by implementing a
time graph structure consisting of parallel and sequential TimeCon-
tainer nodes, as shortly discussed in section 2, for mapping the an-
imation time to the fraction of the final key-frame intervals. But for
more complex schedules this soon gets confusing and hardly main-
tainable. Furthermore, it does not provide any means for defining
animation data centrally and mixing it with other animations.

Whereas the ’command’ field contains an incoming PML script,
the ’message’ eventOut sends an outgoing PML message string.
This way, the TimelineComposer node handles all communication
with the system and forwards PML commands to its parser. Dur-
ing parsing, the scheduling block is sequenced and single action
and definition chunks are created and transfered to the appropriate
components. When having received a start message, the internal
scheduler dispatches the action chunks to the AnimationController
node of the corresponding character. The MFNode field ’anima-
tionController’ holds references to the AnimationController nodes
of all objects, which shall be animated. Whenever an actions script
shall be executed, the TimelineComposer triggers all Animation-
Controller nodes, which in turn access the respective data of their
referenced animation container nodes (the InstantAnimationCon-
tainer for referring to transitions, which are state changes like tog-
gling visibility, and the TimedAnimationContainer for storing all
time based animations like key-frame animations and inverse kine-
matics) for processing this request.

Figure 8: Overview of proposed system architecture. Whenever
the TimelineComposer receives a PML command, all requests are
processed, and forwarded to the responsible AnimationControllers.

TimelineComposer : X3DNode {

SFBool [in,out] enabled TRUE

SFString [in,out] command ""

SFString [out] message

MFNode [in,out] animationController []

}

5.2.2 The Animation Controller

The AnimationController node controls a set of animations con-
nected with a virtual character or any other object. Because a com-
plex application can lead to an arbitrary number of postures and
gestures or respectively animations, the main job of the Animation-
Controller is to blend and cross-fade all kinds of animations. This is
due to the requirement, that for correct blending, cross-fading, and
generally updating the actions of an object at a single time step,
the controlling unit needs knowledge of all animations, a task that
sometimes can not be handled with the simple scripting and rout-
ing mechanisms of X3D. The ’name’ field contains the name of the
object to be controlled, which is relevant for the later mapping to
PML scripts. The ’animationContainer’ field contains references to
all animations as defined by the animation container nodes. With
the help of the ’ikTargets’ field possible IK targets can be given,
what is needed for parameterizing inverse kinematics animations
like ”look at A” or ”point at B”. Although blending avoids jumps
in transitions, it can cause undesirable side effects like foot slid-
ing. Therefore the fields ’fadingInterval’, ’fadingRotTol’, and ’fad-
ingPosTol’ can be used to specify the time interval and distances
where blending should occur. The default values were empirically
determined and led in most cases to the best results.

X3DAnimationBase : X3DNode {

SFString [] name ""

}

AnimationController : X3DAnimationBase {

SFString [] name ""

MFNode [in, out] animationContainer []

MFNode [in, out] ikTargets []

SFFloat [in, out] fadingInterval 0.2

SFFloat [in, out] fadingRotTol 0.7

SFFloat [in, out] fadingPosTol 3.0

}

The AnimationController and the abstract X3DAnimationContainer
both inherit from X3DAnimationBase, an abstract base node that
only defines a ’name’ field. The X3DAnimationContainer contains
the animated targets of an animation. The MFNode field ’targets’



holds references of targets to be animated or changed (usually the
joints), and the MFString field ’fieldnames’ contains the names of
the corresponding fields in order to find this field inside the target.
This is needed, because if for instance an SFVec3f value shall be
sent to a target node, e.g. a Transform node, it is often ambiguous,
which field was meant (in this example it could be either of ’center’,
’scale’, or ’translation’). The TimedAnimationContainer node con-
tains a set of interpolators of an animation (in the ’interpolators’
MFNode field) and the original default duration of the animation
(in the ’duration’ field). Whereas the TimedAnimationContainer
denotes actions with a certain duration, the InstantAnimationCon-
tainer denotes transitions, i.e. simple state changes like show, hide,
start or stop. It therefore does not contain interpolators but instead
it can hold the id of a media-object as defined in a definitions script.

X3DAnimationContainer : X3DAnimationBase {

SFString [] name ""

MFNode [] targets []

MFString [] fieldnames []

}

TimedAnimationContainer : X3DAnimationContainer {

SFString [] name ""

MFNode [] targets []

MFString [] fieldnames []

MFNode [] interpolators []

SFFloat [] duration 0

}

InstantAnimationContainer : X3DAnimationContainer {

SFString [] name ""

MFNode [] targets []

MFString [] fieldnames []

SFString [in, out] mediaId ""

}

6 Examples and Discussion

6.1 Using the Scripting Interface...

Due to the above mentioned drawbacks concerning timing, syn-
chronization, and the lack of an easy to use TTS system, in X3D
based applications the output of spoken text is often still done with
the help of on-screen displays instead of using audio output. In the
following we discuss an example that demonstrates how this task
can be simplified with our approach. We begin by describing the
high level scripting interface, before explaining the corresponding
X3D node extensions. As can be seen next, the phoneme to viseme
mapping and all required animations should be defined first. Here
the values of the ’id’ attributes must match with the ’name’ fields
of the animation nodes. After that, the animations can be started
by routing a filename or string with the PML actions script to the
’command’ field of the TimelineComposer node. In this example
the character asks something, and concurrently makes one gesture
(<par> block), before doing another one (in <seq> block).

<definitions id="def1">

<character id="Valerie" src="Valerie.wrl">

<voice id="vVal" refId="Klara16"/>

<viseme>

<phoneme id="h" refId="H" intensity="1"/>

...

</viseme>

<multiPoses id="attract" dur="4167"/>

<singlePose id="H" dur="1000"/>

...

</character>

</definitions>

As can be seen in the definitions script above, the type of voice
for parameterizing the Voice node is also defined, which is only
useful in combination with the AudioTTS node. When having a
closer look at the <speak> tag in the actions script shown next,
one can notice, that the duration of this action is zero, because
the needed phonemes and their lengths have to be internally cal-
culated by the TTS system, and are not known until then. If
lip synchronization shall be achieved by using a standard Audio-
Clip node instead, via the tag <audio src=’hello.wav’>

an audio file must be provided. Additionally a list of phonemes
with their respective durations, which have to be computed in ad-
vance, has to be declared as sub-tag of the audio tag like this:
<phoneme refId=’h’ dur=’100’/>. Although the first al-
ternative is much easier to use, it has the disadvantage, that the exact
duration is not known beforehand, because it is internally calcu-
lated during run-time, and thus can’t be synchronized exactly with
other actions. This could be alleviated by providing a higher level
of abstraction, where the temporal order is given by using generic
alignment attributes instead of a <schedule> block, but this not
only requires a lot of care in order to avoid invalid states, but it is
also not always unambiguously resolvable.

<actions id=’act1’ start=’true’>

<character refId=’Valerie’>

<speak id=’a’>

<text>Hello!</text>

</speak>

<animate id=’b’>

<multiPoses refId=’present’/>

</animate>

<animate id=’c’>

<multiPoses refId=’attract’/>

</animate>

</character>

<schedule>

<seq>

<par>

<action refId=’c’ begin=’0’ dur=’4167’/>

<action refId=’a’ begin=’1000’ dur=’0’/>

</par>

<action refId=’b’ begin=’0’ dur=’2733’/>

</seq>

</schedule>

</actions>

6.2 ...and the Controlling Component

After having explained the high level interface, we will show how
this corresponds to our proposed nodes for animation control, and
how they can be used in a concrete setting. The following code
fragment shows exemplarily how to define interpolator based an-
imations in TimedAnimationContainer nodes, and how an Anima-
tionController node for a character or object can look like. In this
framework, the interpolators are only used as data containers for
key-value pairs, as depicted in Figure 9. Thus, there is no need for
routes or other difficult to maintain helper structures, because all
interpolators, which are active at a given time frame ti, are solely
used for the internal calculation of joint rotations etc., in order to
have access to all required animation data for mixing animations
correctly and efficiently. This way, both gestures from the example
PML script above are automatically cross-faded, and additionally
blended with the idle poses from the first example in section 4.

In addition, this concept is extensible not only concerning the
scripting interface, but also the controlling component, because
it allows to transparently include more sophisticated schemes for
blending animations like the usage of transition motions for motion
graphs, as well as those for motion generation, like the parameteri-
zable motions used for locomotion generation explained in section



Figure 9: Timeline at time ti, and mixing in AnimationController.

5.1.2. Obviously each animation container has to handle lots of
data, especially if the key times and values were taken from motion
capture data. Therefore animation containers can be reloaded dur-
ing run-time by sending an appropriate definitions script. This is
quite convenient, because due to the large amount of data, file sizes
soon get too big for handling them in any editor.

DEF AC_Valerie AnimationController {

name "Valerie"

animationContainer [

DEF attract TimedAnimationContainer {

name "attract"

interpolators [

OrientationInterpolator {...},

...

]

duration 4.1667

targets [ USE Bip01_Spine, ... ]

fieldnames [ "rotation", ... ]

},

...

]

}

6.3 Discussion and Possible Extensions

Currently in X3D the only possibility to gain access to data in
other files is via the import/ export mechanism, but this is only
allowed for ROUTEs between files that are directly inlined, and
therefore not viable for our problem. Consequently another op-
tion is to allow node re-USE over file boundaries. In this case
the node names may not be unique any more, why we have imple-
mented a slightly different addressing scheme that extends the In-
line node with an additional field ’nameSpaceName’, which allows
referencing even over file boundaries with the syntax ’nameSpace-
Name::nodeName’. The question is, in how far this seems to break
with the concepts of X3D, which already have been designed more
than ten years ago with web based applications in mind. At this
time, scene graphs were the only reasonable choice for 3D appli-
cations and a typical PC was almost swamped by rendering some
gouraud shaded geometric primitives. Nowadays, a typical scene
has much more content and a lot of interacting elements that cannot
be kept in a single file. By allowing to reference nodes in other files,
scene description and handling gets much clearer, but for usage in
web environments one has to make sure, that only such nodes can
be used, which explicitly may be shared by other people.

Referring to the different layers of abstraction as depicted in Figure
2 we have implemented a Steering component [Reynolds 2005]. It
includes a set of nodes for simulating autonomous characters within
a scene. They have the ability to navigate around in their world in a
life-like and improvisational manner. By combining predefined be-
haviors like wander, seek or flee behavior, a variety of autonomous

Figure 10: Left: A virtual tour guide. Right: Language learning.

systems can be simulated. More on a proof-of-concept level we
have also implemented the Brain node for representing the cogni-
tive layer in order to create avatars that can communicate with a
user of the X3D world. The node is parameterized with an Eliza
style AIML file for defining the topic. By setting the SFString ’ask’
field, one can receive the clear-text answers to the questions sent
via the ’answer’ outslot. But it should be stated, that to our opinion
with X3D only the ”body”, namely the visual and auditive repre-
sentation, should be modeled, but not the ”mind”.

7 Conclusion and Future Work

In this paper we have discussed, how humanoid animation can be
efficiently controlled in the context of H-Anim/ X3D. The current
H-Anim standard only defines the skeleton setup, consisting of the
rigid segments and joints, and a skins and bones system for seam-
less skinning. Character animation itself is mainly accomplished
with timers and simple linear interpolators based on predefined an-
imation sets. However, definition and handling of animations have
never been part of the H-Anim standard, and the built-in X3D ani-
mation mechanisms are not suitable for dealing with multiple ani-
mations that shall be combined and concatenated dynamically dur-
ing run-time. Furthermore, X3D does not provide any support for
more advanced features like audio nodes for text-to-speech, includ-
ing the automatic calculation of actual phonemes and weighting
factors for achieving lip synchronization.

Thus, to overcome some of the limitations concerning character an-
imation and authoring, in this paper we have presented a few en-
hancements to the present X3D standard, comprising extensions for
speech synthesis and lip synchronization, as well as for the anima-
tion of characters and other objects, including the ability to mix
an arbitrary number of animations of different types, by providing
nodes for controlling animations, which also convert a schedule and
mix animations. Furthermore, we have explained the challenges
of dynamics related to virtual characters, covering play-back and
blending of predefined animations, as well as on-line motion gen-
eration. Concerning the latter aspect, it is important to note that the
proposed animation control component is also capable of handling
this type of animation and is thus extensible in consideration of new
concepts of motion generation.

Moreover, we have presented a scripting and interface language
that hides complexity and makes the scripting of behavior eas-
ier, and thus allows the implementation of story-lines at a higher
level, allowing application developers to create and author realistic
and interactive 3D environments easily. The proposed extensions
were used and evaluated in different scenarios, like in the so-called
ZAMB application developed cooperatively with researchers in the
field of AI within the Virtual Human project [VirtualHuman 2007]
(as shown in Figure 3), or in the applications shown in Figure 10.
The left image shows a virtual tour guide explaining a historical
site, whereas the right image shows a language learning scenario.



For future developments we plan to extend the inverse kinematics
node, to incorporate a path planning component, and we would like
to improve the proposed animation scripting language, which cur-
rently focuses on the specification of verbal and non-verbal behav-
iors of virtual characters in multi-party dialogs, by including exten-
sions for walking etc. Furthermore we would also like to integrate
motion graphs and a better method for generating suitable transition
motions towards a more realistic combination of animations.
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