<div dir="ltr">John - real time raytracing<div>I've been reading up on real time raytracing. Nvidia calls it RTX. DirectX calls it DXR. Vulkan calls it nvidia extensions for RTX. And besides global illumination for rendering they say it can be used for scientific computations like heat flow - presumably also Black-Scholes..</div><div>(me: Energy efficiency aka EE will be important as we decarbonize our global economic activity. Being able to model sunshine and heat flow -and show it working in real time- will help explain and nurture low cost EE methods ... building by building. So I'm thinking of getting some DXR/RTX working, Maybe in freewrl, on mouse-up between navigation drags. But I don't know how to compute or render heat flow - yet.)</div><div>-Doug</div><div><br></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Tue, Jan 29, 2019 at 2:58 AM John Carlson <<a href="mailto:yottzumm@gmail.com">yottzumm@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div lang="EN-US"><div class="gmail-m_7158521912893868599WordSection1"><p class="MsoNormal">This email happened because I noticed heat mentioned in both stock market equations and radiosity equations.</p><p class="MsoNormal"><i><u></u> <u></u></i></p><p class="MsoNormal"><a href="https://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model" target="_blank">https://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model</a> :<u></u><u></u></p><p class="MsoNormal"><u></u> <u></u></p><p class="MsoNormal" style="margin-bottom:1.2pt;margin-left:19.2pt;background:white"><u></u><span style="font-size:10pt;font-family:Symbol;color:rgb(34,34,34)"><span>·<span style="font:7pt "Times New Roman"">         </span></span></span><u></u><span style="font-size:10.5pt;font-family:Arial,sans-serif;color:rgb(34,34,34)"><a href="https://en.wikipedia.org/wiki/Heat_equation" title="Heat equation" target="_blank"><span style="color:rgb(11,0,128)">Heat equation</span></a>, to which the Black–Scholes PDE can be transformed<u></u><u></u></span></p><p class="MsoNormal"><u></u> <u></u></p><p class="MsoNormal"><a href="https://en.wikipedia.org/wiki/Heat_equation" target="_blank">https://en.wikipedia.org/wiki/Heat_equation</a><u></u><u></u></p><p class="MsoNormal"><u></u> <u></u></p><p class="MsoNormal"><span style="font-size:10.5pt;font-family:Arial,sans-serif;color:rgb(34,34,34);background:white">The <b>heat equation</b> is a </span><a href="https://en.wikipedia.org/wiki/Parabolic_partial_differential_equation" title="Parabolic partial differential equation" target="_blank"><span style="font-size:10.5pt;font-family:Arial,sans-serif;color:rgb(11,0,128);background:white">parabolic partial differential equation</span></a><span style="font-size:10.5pt;font-family:Arial,sans-serif;color:rgb(34,34,34);background:white"> that describes the distribution of </span><a href="https://en.wikipedia.org/wiki/Heat" title="Heat" target="_blank"><span style="font-size:10.5pt;font-family:Arial,sans-serif;color:rgb(11,0,128);background:white">heat</span></a><span style="font-size:10.5pt;font-family:Arial,sans-serif;color:rgb(34,34,34);background:white"> (or variation in </span><a href="https://en.wikipedia.org/wiki/Temperature" title="Temperature" target="_blank"><span style="font-size:10.5pt;font-family:Arial,sans-serif;color:rgb(11,0,128);background:white">temperature</span></a><span style="font-size:10.5pt;font-family:Arial,sans-serif;color:rgb(34,34,34);background:white">) in a given region over time.<u></u><u></u></span></p><p class="MsoNormal"><u></u> <u></u></p><p class="MsoNormal"><a href="https://en.wikipedia.org/wiki/Radiosity_(radiometry)" target="_blank">https://en.wikipedia.org/wiki/Radiosity_(radiometry)</a><u></u><u></u></p><p class="MsoNormal"><u></u> <u></u></p><p style="margin-right:0in;margin-bottom:6pt;margin-left:0in;background:white"><span style="font-size:10.5pt;font-family:Arial,sans-serif;color:rgb(34,34,34)">In <a href="https://en.wikipedia.org/wiki/Radiometry" title="Radiometry" target="_blank"><span style="color:rgb(11,0,128)">radiometry</span></a>, <b>radiosity</b> is the <a href="https://en.wikipedia.org/wiki/Radiant_flux" title="Radiant flux" target="_blank"><span style="color:rgb(11,0,128)">radiant flux</span></a> leaving (emitted, reflected and transmitted by) a surface per unit area, and <b>spectral radiosity</b> is the radiosity of a surface per unit <a href="https://en.wikipedia.org/wiki/Frequency" title="Frequency" target="_blank"><span style="color:rgb(11,0,128)">frequency</span></a> or <a href="https://en.wikipedia.org/wiki/Wavelength" title="Wavelength" target="_blank"><span style="color:rgb(11,0,128)">wavelength</span></a>, depending on whether the <a href="https://en.wikipedia.org/wiki/Spectral_radiometric_quantity" title="Spectral radiometric quantity" target="_blank"><span style="color:rgb(11,0,128)">spectrum</span></a> is taken as a function of frequency or of wavelength.</span><sup id="gmail-m_7158521912893868599cite_ref-1"><span style="font-size:8.5pt;font-family:Arial,sans-serif;color:rgb(34,34,34)"><a href="https://en.wikipedia.org/wiki/Radiosity_(radiometry)#cite_note-1" target="_blank"><span style="color:rgb(11,0,128)">[1]</span></a></span></sup><span style="font-size:10.5pt;font-family:Arial,sans-serif;color:rgb(34,34,34)"> <u></u><u></u></span></p><p style="margin-right:0in;margin-bottom:6pt;margin-left:0in;background:white"><span style="font-size:10.5pt;font-family:Arial,sans-serif;color:rgb(34,34,34)"><u></u> <u></u></span></p><p style="margin-right:0in;margin-bottom:6pt;margin-left:0in;background:white"><span style="font-size:10.5pt;font-family:Arial,sans-serif;color:rgb(34,34,34)"><a href="https://en.wikipedia.org/wiki/Radiosity_(computer_graphics)" target="_blank">https://en.wikipedia.org/wiki/Radiosity_(computer_graphics)</a><u></u><u></u></span></p><p style="margin-right:0in;margin-bottom:6pt;margin-left:0in;background:white"><span style="font-size:10.5pt;font-family:Arial,sans-serif;color:rgb(34,34,34)"><u></u> <u></u></span></p><p style="margin-right:0in;margin-bottom:6pt;margin-left:0in;background:white"><span style="font-size:10.5pt;font-family:Arial,sans-serif;color:rgb(34,34,34)"><u></u> <u></u></span></p><p class="MsoNormal"><span style="font-size:10.5pt;font-family:Arial,sans-serif;color:rgb(34,34,34);background:white">Radiosity methods were first developed in about 1950 in the engineering field of </span><a href="https://en.wikipedia.org/wiki/Heat_transfer" title="Heat transfer" target="_blank"><span style="font-size:10.5pt;font-family:Arial,sans-serif;color:rgb(11,0,128);background:white">heat transfer</span></a><span style="font-size:10.5pt;font-family:Arial,sans-serif;color:rgb(34,34,34);background:white">. They were later refined specifically for the problem of rendering computer graphics in 1984 by researchers at </span><a href="https://en.wikipedia.org/wiki/Cornell_University" title="Cornell University" target="_blank"><span style="font-size:10.5pt;font-family:Arial,sans-serif;color:rgb(11,0,128);background:white">Cornell University</span></a><sup id="gmail-m_7158521912893868599cite_ref-2"><span style="font-size:8.5pt;font-family:Arial,sans-serif;color:rgb(34,34,34);background:white"><a href="https://en.wikipedia.org/wiki/Radiosity_(computer_graphics)#cite_note-2" target="_blank"><span style="color:rgb(11,0,128)">[2]</span></a></span></sup><span style="font-size:10.5pt;font-family:Arial,sans-serif;color:rgb(34,34,34);background:white"> and </span><a href="https://en.wikipedia.org/wiki/Hiroshima_University" title="Hiroshima University" target="_blank"><span style="font-size:10.5pt;font-family:Arial,sans-serif;color:rgb(11,0,128);background:white">Hiroshima University</span></a><span style="font-size:10.5pt;font-family:Arial,sans-serif;color:rgb(34,34,34);background:white">.</span><sup id="gmail-m_7158521912893868599cite_ref-3"><span style="font-size:8.5pt;font-family:Arial,sans-serif;color:rgb(34,34,34);background:white"><a href="https://en.wikipedia.org/wiki/Radiosity_(computer_graphics)#cite_note-3" target="_blank"><span style="color:rgb(11,0,128)">[3]</span></a><u></u><u></u></span></sup></p><p class="MsoNormal"><u></u> <u></u></p><div style="border-top:none;border-right:none;border-left:none;border-bottom:1pt solid windowtext;padding:0in 0in 1pt"><p class="MsoNormal" style="border:none;padding:0in"><u></u> <u></u></p></div><p class="MsoNormal">So the question becomes, what solutions can we use from 3D graphics apply to the stock market…Can we visualize the “radiant flux” or radiosity of a stock (emitted (lost or gained stock value), reflected (transmitted to another equity or currency) and transmitted (?) stock values).   It seems like emitted light causes light patches, thus a part of the stock market will heat up or cool off (distribution of heat), whereas reflected light means part of the stock market will transfer heat (or light) through a stock to impact another stock.<u></u><u></u></p><p class="MsoNormal"><u></u> <u></u></p><p class="MsoNormal"><u></u> <u></u></p><p class="MsoNormal">Heat equation is current values and radiant flux is animation of heat maybe?<u></u><u></u></p><p class="MsoNormal"><u></u> <u></u></p><p class="MsoNormal">I graduated in 1986, before SIGGRAPH 1986. But I did study radiosity in graduate classes.<u></u><u></u></p><p class="MsoNormal"><u></u> <u></u></p><p class="MsoNormal">John<u></u><u></u></p><p class="MsoNormal"><u></u> <u></u></p><p class="MsoNormal">Thus we come to: <a href="https://en.wikipedia.org/wiki/Rendering_equation" target="_blank">https://en.wikipedia.org/wiki/Rendering_equation</a> and how its various implementations can solve the electromagnetic (light, heat) equation and thus Black-Scholes and the stock market.  How can we create objects in a room whose electro-magnetic values  simulate the stock market?<u></u><u></u></p><p class="MsoNormal"><u></u> <u></u></p><p class="MsoNormal">Michael Corley, if you can combine global illumination and Black-Scholes into a single model, you will get that PhD, I bet, maybe even a Nobel Prize in Economics *<b>and</b>* Physics. There’s still a lot we don’t know about rendering light (see rendering equation limitations).<u></u><u></u></p><p class="MsoNormal"><br>It seems to me like something like the Rendering equation (the integral of all light impacting this point from points, plus the points that are impacted by this point) could be very useful for the stock market, if not already used. One nice thing about radiosity is that you don’t have to recompute if you switch views.  But the matrices used in Radiosity can be huge! Think of the whole stock market reflecting on the whole stock market.<u></u><u></u></p><p class="MsoNormal"><u></u> <u></u></p><p class="MsoNormal">It seems like I should be studying the Standard Model of Physics and making the Standard Model of Computer Graphics, the Standard Model of the Stock Market, from the SMP.<u></u><u></u></p><p class="MsoNormal"><u></u> <u></u></p><p class="MsoNormal">So if you wanted to compute how much of the stock market will transfer between two stocks or currency (for the whole stock market) study flux (radiosity).  I don’t know how to study individual photons yet, I don’t think, but it would be interesting.<u></u><u></u></p><p class="MsoNormal"><u></u> <u></u></p><p class="MsoNormal">Well that’s enough BSing for today.<u></u><u></u></p></div></div>_______________________________________________<br>
x3d-public mailing list<br>
<a href="mailto:x3d-public@web3d.org" target="_blank">x3d-public@web3d.org</a><br>
<a href="http://web3d.org/mailman/listinfo/x3d-public_web3d.org" rel="noreferrer" target="_blank">http://web3d.org/mailman/listinfo/x3d-public_web3d.org</a><br>
</blockquote></div>