<html xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"><head><meta http-equiv=Content-Type content="text/html; charset=utf-8"><meta name=Generator content="Microsoft Word 15 (filtered medium)"><style><!--
/* Font Definitions */
@font-face
{font-family:Wingdings;
panose-1:5 0 0 0 0 0 0 0 0 0;}
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:blue;
text-decoration:underline;}
p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph
{mso-style-priority:34;
margin-top:0in;
margin-right:0in;
margin-bottom:0in;
margin-left:.5in;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
.MsoChpDefault
{mso-style-type:export-only;}
@page WordSection1
{size:8.5in 11.0in;
margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
{page:WordSection1;}
/* List Definitions */
@list l0
{mso-list-id:1788087807;
mso-list-type:hybrid;
mso-list-template-ids:619972706 -1 67698691 67698693 67698689 67698691 67698693 67698689 67698691 67698693;}
@list l0:level1
{mso-level-start-at:0;
mso-level-number-format:bullet;
mso-level-text:\F0D8;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-.25in;
font-family:Wingdings;
mso-fareast-font-family:"Times New Roman";
mso-bidi-font-family:"Times New Roman";}
@list l0:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-.25in;
font-family:"Courier New";}
@list l0:level3
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-.25in;
font-family:Wingdings;}
@list l0:level4
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-.25in;
font-family:Symbol;}
@list l0:level5
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-.25in;
font-family:"Courier New";}
@list l0:level6
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-.25in;
font-family:Wingdings;}
@list l0:level7
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-.25in;
font-family:Symbol;}
@list l0:level8
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-.25in;
font-family:"Courier New";}
@list l0:level9
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-.25in;
font-family:Wingdings;}
ol
{margin-bottom:0in;}
ul
{margin-bottom:0in;}
--></style></head><body lang=EN-US link=blue vlink="#954F72" style='word-wrap:break-word'><div class=WordSection1><p class=MsoNormal>Hi John, </p><p class=MsoNormal><o:p> </o:p></p><ul style='margin-top:0in' type=disc><li class=MsoListParagraph style='margin-left:0in;mso-list:l0 level1 lfo1'>… with LIDAR or related …</li></ul><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal>Not known from here, but x3d can certainly represent virtualized correlations between modellable facets to produce nD+1. So, all that is needed is your determination of the data and known or predicted relationships between other known or suspected data. </p><p class=MsoNormal>All you really have to do is figure what it needs so you can interact with what you need to experience. </p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal>As for the motodemo, this realistic model for this combo of a man and a machine and of nature and the road is accomplished using sensors and connections between the head and the butt giving motion requests to the aformentioned nodes and all extremities, with maximum feedback between the nodes to produced the anticipated result resulting in maximum acceleration and braking and turning powers and necessary traction to get it done and keep it off the walls and across the line without ai sensors and controls. Add various sensors and you get various data. As can be seen, best to know the track and have the best rain tires and then don’t crash and maybe win. Don’t try this without flagmen.</p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal>All types of sensors are used to define data to produce realistic virtual tracks and racers, and competitive races. </p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal>Have Fun,</p><p class=MsoNormal>Joe</p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal><o:p> </o:p></p><div style='mso-element:para-border-div;border:none;border-top:solid #E1E1E1 1.0pt;padding:3.0pt 0in 0in 0in'><p class=MsoNormal style='border:none;padding:0in'><b>From: </b><a href="mailto:yottzumm@gmail.com">John Carlson</a><br><b>Sent: </b>Saturday, October 9, 2021 5:30 PM<br><b>To: </b><a href="mailto:x3d-public@web3d.org">X3D Graphics public mailing list</a><br><b>Subject: </b>[x3d-public] LIDAR?</p></div><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal>Any comments on whether this was done partially with LIDAR or related </p><p class=MsoNormal>scanning?</p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal>https://www.youtube.com/watch?v=S3DEM6XDDTk</p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal>Thanks,</p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal>John</p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal>_______________________________________________</p><p class=MsoNormal>x3d-public mailing list</p><p class=MsoNormal>x3d-public@web3d.org</p><p class=MsoNormal>http://web3d.org/mailman/listinfo/x3d-public_web3d.org</p><p class=MsoNormal><o:p> </o:p></p></div></body></html>