
Progress and Updates on Information Model

for MAR Contents (ISO 21858)

Jan 23, 2019

Gerard J. Kim

Korea University

1

Mixed and Augmented Reality (MAR)

• What is AR (Augmented Reality) ?

• “Augmented Reality (AR) is a field of computer research

which deals with the combination of

real-world and computer-generated data.” – wikipedia.org

• Key Features of AR [R. Azuma 97]

• Combines real and virtual images

• Interactive in Real-Time

• Registered in 3D Real World

Mixed (and Augmented) Reality Continuum

[Paul Milgram’s Reality-Virtuality Continuum (1994)]

Virtual
Environment

Real
Environment

Mixed Reality

Augmented
Reality

Augmented
Virtuality

HITLab KBS

Augmented Reality Continuum

The Need

• Mixed reality (or augmented reality) has become possible on

commodity hardware (e.g. smart phone) and through cloud services -

Processing

• Wearable computing

• Sensors and displays

• Environment sensors !

• Internet of Things

• Content creation

• Browser + contents model

• Share contents!

MAR is “implemented” as a VR system

 E.g. Video see through AR

 Real world is captured as a video

 Target objects are identified and their spatial

information obtained (sensed)

 A virtual space is created in which the video is put in the

background and other synthetic virtual objects are put into this

space (using the obtained spatial information) and rendered

 Natural direction

 Extend current virtual space representation for MAR

Extending contents to be MAR capable!

?

What do we need? Mix virtual and real

HTML/document in real (e.g. video)

Video in virtual

Real (e.g. image) in Real (e.g. image)

Virtual in HTML/document (virtual)

…

Approach for MAR content model – Component based

• Identify chunks of information needed to represent various MAR contents and system classes (AR/AVR)

• Define functionality or content type by mix and match (association)

• Real objects

• Virtual objects (use existing constructs)

• MAR scene structure (use/modify existing constructs)

• Real – virtual association

• Mutual placeholder designation

• Registration

• MAR events and behaviors

• Augmentation information and their style

• Sensors and real world capture

• Backdrop world representation

• Abstract out details

• Easy to use and understand

• Minimize any system specific scripting/programming

MAR System

MAR Contents

Status – ISO/IEC AWI 21858: “Information model for MAR contents”

• Approved as a new work item proposal

- April, 2016 (N3808 / N3809)

• Target date: 2018-08-08  2018-12-12?

• Working on the CD document – being delayed …

• Component identification

• Object-class diagram (UML)

• Detailed information/object modeling

• Attributes and data type

• Use cases

• Implementation

Related works

• Most MAR systems implemented as a single application using programming libraries

(e.g. AR Toolkit)

• Separation of contents and browser – started with location based AR (Wikitude, Layar, …)

• ARML (Augmented Reality Markup Language) allows defining geographical points or landmarks of interest and

associate GPS coordinates and simple augmentation contents

• Adopted as a standard for the Open Geospatial Consortium

• X3D: Extended nodes to support e.g. video see-through based AR, such as the live video background, extended camera

sensor nodes

• MPEG: Application format for video augmented content (ARAF)

• InstantReality, AWE, Google ARCore … : Declarative scene description + Scripted AR functionality

• Still limited

• Not comprehensiveness

• Lacks sufficient abstraction

• Lacks clean modularization requiring lengthy and complicated script programming

10UML Fundamentals, Ernest Cachia, 2004

11

12

User

Interact with
MAR System
and Contents

User
uses

MAR device/browser
(MAR system)

Physical
Object/

Environment

MAR
Content

Description

13

Use case

“Interacting with MAR Contents through the MAR system (e.g. browser/player)”
Actor: Any user
Pre:
- User has MAR device that is equipped with MAR browser
- MAR content description is given/selected by the user
Post:
- User sees through the device/browser augmented physical environment according

to the MAR content description

Make input to
MAR Content

Select
content

Display
MAR Content

uses/includes

User

Make input to
MAR Content

Select
content

Display
MAR Content

14

Use case

Physical
Object/

Environment

MAR
Content

Description

User

Interact with
MAR System
and Contents

User
uses

MAR device/browser
(MAR system)

Physical
Object/

Environment

MAR
Content

Description

15

Use case

Display
AR Content

Display
AVR Content

Location
based AR

Marker
based AR

AVR – Live
actor

AVR –
Mirrored

Object/Env.

extends
extends

extends extends

16

Use case

User

Renderer

SG
Updater

Simulator

Sensor

Capturer

Recog-
nizer

Tracker

User
uses

sensor

Display
Device

User
watches

the display

Each circle
has childrenSensor sends

sensed data
CRT interprets data

and updates TG

Simulator
updates SG

Renderer gets
information that must be

rendered from SG

Display device
displays information

Physical
Environment

MAR SG
and Nodes

Content
- MAR Scene Graph
- Set up ?

Children : TG, C, B, RO, VO, …

Sensor
senses
real

things

MAR Content/Scene

• Represented as an hierarchical and graphical organization of objects (nodes) in the

“mixed and augmented reality” scene

• Nodes represent:

• All nodes are subclasses of the abstract MARSGNode

• Objects in the scene (virtual and real)

• Those that are purely computational/functional

• Those that have appearances and to be rendered in different modalities

(e.g. visual, aural, tactile, haptic, …)

• Coordinate systems and spatial relation/grouping

• (Explicit) Registration between real objects and virtual objects

• Logical/Spatial grouping
17

18

MARSGNode

Access type Data type Attribute/Method name Explanation

private string id a unique identifier for reference

private MARSCNode[] parent parent nodes (usually, there is only one parent)

private MARSCNode[] childrenNodes a list of or array of one or more children nodes, also of the MARSGNode

(or its subclass) type

private Cube bounding-box A bounding box specification of for the object this node represents in th

e MAR scene (optional).

public MARSCNode MARSCNode() MARSCNode constructor

public void init() abstract initializing method for the MARSCNode class

public string getId() return the string id of this node

public void setId(string id) set the id of this node

public void addChild(MARSCNode child) add a child to this node of MARSGNode type (or its subclass)

public void removeChild(MARSCNode child) remove a child to this node of MARSGNode type (or its subclass), if it exi

sts.

public void removeAllChild() remove all children nodes, if any

public MARSCNode[] getChildren() return the list/array of children nodes

public Cube getBoundingBox() recompute and update the bounding box for this node considering all th

e sub-objects to this node and update the attribute bounding-box

public MARSGNode[] getParent() return the list/array of parent nodes

Relations (connections among nodes)

• Aggregation (depicts a classifier as a part of, or as subordinate to, another classifier – ibm.com)

• Between parent and children TransformGroup

• Spatial placeholder and relationship

• Logical/Spatial grouping

• A group node consists of its children conceptually who all share the same transform (real or virtual)

• E.g. a group may contain a virtual object, bounding box, all sharing the same transform

(or coordinate system)

• Association and Dependency

(objects of one classifier connect and can navigate to objects of another classifier – ibm.com)

• One node’s attribute value refers/changes information from another node through

named attribute

• Can be one directional or bidirectional

A B

B is navigable (accessible) from A
A can change B

MAR system

• The system that take the MAR content (selected by the user), other user input (as occurring during user interaction

with the content) and simulates and displays/presents the interactive content to the user

• Assume that there is an MAR system with the following components according to the MAR Reference Model (18039)

• Real capturer

• Recognizer

• Tracker

• MAR simulation engine

• Display/Renderer

• MAR Contents has “relationships” (aggregation and association) to the underlying MAR System (see later slides), e.g.

• Sensors

• Capturer  Object nodes, Behavior nodes, …

• Tracker  TG nodes

• Recognizer  Behavior nodes, …

• MAR Scene  Simulation engine 20

CRT

TransformGroup (TG)
• Specifies coordinate system and spatial relationship with respect to a reference parent coordinate system (or TransformGroup)

• Translation, Rotation and Scaling

• TG represents a particular spatial placeholder in the given environment

• Aggregation relationship with parent TG

• If there is no explicit parent, the parent is the assumed root TG

• Two subclasses

• RealTG – a spatial placeholder in the physical space

• Assume that there exists a corresponding root TG node

• VirtualTG – a sptial placeholder in the virtual space

• Assume that there exists a corresponding root TG node

• In principle, there exists a “Registration” association class between/among heterogeneous TG’s

• Explicitly represents the “augmentation” e.g. between RTG and VTG

• Explicitly represents the merging of heterogeneous worlds, e.g. among separately constructed VTG’s, separate RTG’s, …

• Also represents the notion of a group (aggregation) of different object information that shares a common coordinate system

• TransformGroup may be implemented in a different way (e.g. as separate but related/associated classes/objects)

(Spatial) Registration

• Association class among/between TG’s (real or virtual)

• Explicitly represents the “augmentation” e.g. between RTG and VTG

• In principle, we choose not to omit the explicit representation (superfluous?)

• Explicitly represents the merging of heterogeneous worlds, e.g. among separately

constructed VTG’s, separate RTG’s, …

• May specify the method of registration, if needed

• Usual scaling, rotation and translation by computation is omitted ?

• Actual spatial transformation is contained in the associated TG’s

• Registration can exist between TG’s and MAR system (e.g. CRT) whose values may

affect TG and need adjustment (e.g. sensor registration – part of the content?)

(Event/data) Mapper
• Event/Data: Particular type of “data/event” that is used to drive MAR simulation/behaviors

• Data: Any piece of information with a value and occupy memory location

• Flows between MAR system (e.g. sensor, CRT) and contents

• In X3D, for events are just any data values of attributes that can propagate through routes (or through association)

• Here we assume that different events and data types exist

• Event: Object existence, Object pose/location, User interaction (touch, gesture, click), Context (time, identity, location)

user defined, …

• Data: Tracking information (Object pose/location), Sensor data

• Event/data Mapper

• Association class among/between event generator (e.g. sensor, CRT) and its user (e.g. behavior)

• Map system defined items to content defined items

• GPS 100, 100  Korea University

• Data filtering, conversion, scaling, etc.

ObjectNode

• Specifies a particular object, virtual or real

• Real objects provide description of things like real objects often used in MAR such as

markers, image patches, GPS location, etc.  See later detailed specification

• Eventually any physical/real object description should be supported

• Virtual objects provide descriptions like any graphical, computational and synthetic

objects like text, image, animation, 2D shapes, 3D shapes, bounding box, light, viewpoint,

etc.

• Ordinary computer graphics scene graph (like X3D, Java3D) will have similar support for these

• This document need not describe detailed virtualobject subclasses

• In addition some special VirtualObjects will be assumed to exist:

• Live background node (see Gun Lee’s work)

• Used in video see through AR

• Live moving texture node (see LAE work from Prof. Yoo)

• Used in augmented virtuality for live captured object in 2D (e.g. chroma-keyed live actor)

Behavior

• Specifies dynamics of virtual objects in time

• Often amounts to a script with arguments from associated other nodes

• Often used behaviors are abstracted for ease of use

• Simple visibility (i.e. show objects): Appear/disappear

• Animated objects: Fixed translation/rotation/scaling, Animation files

• Highlighted effects: Blinking, transparency, color, …

• …

• Associated with MAR system (sensor, capturer, tracker, and recognizer) to

receive events and data that will drive the behavior simulation

• Associated with other objects/nodes on which the behavior operates on

MetaInfo

26

MetaInfo::User

Access type Data type Attribute/Method name Explanation

private string info Meta information about the associated

object

private MARSGNode about cmponent object this meta information i

s associated with in text

The MetaInfo component optionally adds to the basic content of contextual and additional

information about various content constructs – such information may include user(s)/author

characterization and intent of the associated content component.

MAR System: Sensor - Capturer, Tracker, and Recognizer

• These objects get data from the sensor for additional processing and

also produces stream of events/data like the sensors

• They could be modeled as a subclass of Sensor (but not for now)

• Capturer captures real objects as a whole in some way (e.g. environment

background, live human actor, 3D object reconstruction, etc.)

• Tracker returns dynamic and continuous position/rotation/pose date of a

physical object

• Recognizer returns discrete events

Event/Data

• Particular type of “data” that is used to drive MAR simulation/behaviors

• Data: Any piece of information with a value and occupy memory location

• Flows between MAR system and contents

• In X3D, for comparison, events are just any data values of attributes that can propagate through routes

(or through association)

• Here we assume that different events and data types exist

• Event (Discrete)

• Object existence

• Object pose/location

• User interaction: Touch, gesture, click, …

• Others: Context (time, identity, location, pose …), user defined, …

• Data (Continuous)

• Tracking information

• Sensor data

UML Class Diagram (Inheritance)

29

Registration

+ …

+ …
Behavior

+ …

+ …

MARSGNode

+ id: String

+ …

+ addChild(instance)

+ …

TransformGroup

+ …

RealTG

+ …

VirtualTG

+ …

+ …

+ … + …

ObjectNode

+ …

RealObject

+ …

VirtualObject

+ …

+ …

+ … + …

Recognizer

+ …

+ …

Capturer

+ …

+ …

Tracker

+ …

+ …

Sensor

+ …

+ …Mapping

+ …

+ …

SystemMAR Content

참고자료: https://www.lucidchart.com/pages/uml-class-diagram

MAR System

https://www.lucidchart.com/pages/uml-class-diagram

UML Class Diagram (Aggregation and Association)

30

Aggregation Association

Registration

+ …

+ …

Recognizer

+ …

+ …

Tracker

+ …

+ …

Capturer

+ …

+ …

Sensor

+ …

+ …

Mapping

+ …

+ …

Behavior

+ …

+ …

ObjectNode

+ …

+ …

TransformGroup

+ …

+ …

SystemMAR Content

https://www.lucidchart.com/pages/uml-class-diagram

https://www.lucidchart.com/pages/uml-class-diagram

UML Class Diagram

31

Aggregation Association

Spatial

Aggregation

VirtualObject

+ …

+ …

RealTG

+ …

+ …

VirtualTG

+ …

+ …

Behavior

+ …

+ …

RealObject

+ …

+ …

Registration

+ …

+ …

Mapping

+ …

+ …

Recognizer

+ …

+ …

Capturer

+ …

+ …

Tracker

+ …

+ …

Sensor

+ …

+ …

Continuous

Events

Discrete

Events

SystemMAR Content

Logical

Aggregation

Logical

Aggregation

Class A

+ …

+ …

Class B

+ …

+ …

A can access B

참고자료: https://www.lucidchart.com/pages/uml-class-diagram

https://www.lucidchart.com/pages/uml-class-diagram

Scenario (Marker or Image patch based, Video see-through)
We consider only

MAR content side

and do not consider

anything about

system side

Assumed R/V

Root TGs are

initialized by

system

automatically

System side

doesn’t know

anything about

MAR content

Sensor just

senses some

real world data

Assumed
V. Root

Assumed
R. Root

RTG VTG
Marker

RO

R Marker
Tracker

R Viewpoint
VO

Live BG
VO

Camera
Sensor

Live Video
Capturer

MVTG

Sound
VO

3D Horse
VO

Touch
SensorM

Behavior
Visibility/
Sound

Touch

Event

sound

Scenario (GPS based / Video see-through / Pokemon)

Assumed
V. Root

Assumed
R. Root

RTG VTG
Location

RO

R GPS

R Viewpoint
VO

Live BG
VO

Camera
Sensor

Live Video
Capturer

MVTG

Pokemon
VO (3D model)

Touch
Sensor

M

Behavior
(Visibility)

Touch

Event

Sound
VO

M

Behavior
(Animate/
Sound)

Animate/
Sound

Scenario (Glass / Marker or Image patch based)

Assumed
V. Root

Assumed
R. Root

RTG VTG*
Marker

RO

R Marker
Tracker

R Viewpoint
VO

Camera
Sensor

VTG

Sound
VO

3D Horse
VO

Gesture
RecognizerM

Behavior
Visibility/
Sound

Gesture

sound

Scenario (Glass / Location based / Pokemon)

Assumed
V. Root

Assumed
R. Root

RTG VTG*
Location

RO

R GPS

R Viewpoint
VO

VTG

Pokemon
VO (3D model)

Touch
Sensor

M

Behavior
(Visibility)

Touch

Event

Sound
VO

M

Behavior
(Animate/
Sound)

Scenario (Google Glass)

Assumed
V. Root

VTG**

Clock

Touch
Sensor

M

Touch

Event

Menu
VO

Behavior
(Run UI)

Scenario (Live actor in Augmented VR)

Assumed
V. Root

VTG*

Capturer
(Chroma-keying)

Viewpoint
VO

Studio
VO

M

Live Moving
Texture (VO)

Scenario (Multiple interacting live actors)

Assumed
V. Root

VTG*

Capturer
(Chroma-keying)

Viewpoint 1
VO

Studio
VO

M

Live Moving
Texture (VO)

VTG

Capturer
(Chroma-keying)

Viewpoint 2
VO

M

Live Moving
Texture (VO)

R

Interaction
Behavior

<capturer id = ‘cap1’ … >
<tracker id = ‘tracker1’ target = m1 … >
<recognizer id = ‘recog1’ target = m1 …>

<data id = ‘bg_image_stream’ type = video source= = ‘cap1’ …>
<event id = ‘marker1_present’ source = ‘recog1’ … >
<data id = ‘marker1_pose’ source = ‘tracker1’ … >

<scene id = ‘scene_1’ />
<vtg id = ‘vtg1’ parent = ‘root’ … >
<viewpoint id=‘arview’ parent = ‘vtg1’>
<rtg1 id = ‘rtg1’ registration = ‘reg1’ …>
<registration id = ‘reg1’ source = ‘tracker1’ child = ‘rtg1’ parent = ‘vtg1’ transform = ‘marker1_pose’ …>
<vtg id = ‘vtg2’ registration = ‘reg2’ … >
<registration id = ‘reg2’ child = ‘vtg2’ parent = ‘rtg1’ …>
</scene>

<background id = ‘bg1’ data_source = ‘map1’ data = ‘bg_image_stream’ parent = ‘vtg1’ …>
<robject id = ‘m1’ type = marker file = ‘hiro.dat’ parent = ‘rtg1’ …>
<vobject id = ‘v1’ type = HTML parent = ‘vtg2’
content = ‘<h1 id = ‘aug1’ “Hello World” </h1>’
…>

<mapper id = ‘map1’ source = ‘cap1’ dest = [‘bg1’] …>
<mapper id = ‘map2’ source = ‘recog1’ out_event = ‘marker1_present’ dest = [‘beh1’ …] …>

<MARbehavior id = ‘beh1’ event = ‘marker1_present’ AND ‘marker1+pose’ object = [‘v1’]

type = ‘show’ … >

Hello World

Scenario (Marker or Image patch based, Video see-through)
We consider only

MAR content side

and do not consider

anything about

system side

Assumed R/V

Root TGs are

initialized by

system

automatically

System side

doesn’t know

anything about

MAR content

Sensor just

senses some

real world data

Assumed
V. Root

Assumed
R. Root

RTG1 VTG1
RO m1
(Marker)

R2g2 Marker
Tracker

Reg1 Viewpoint
(arview)

bg1
(Live BG VO)

Camera
Sensor

Cap 1
(Live Video
Capturer)

Map1VTG2

VO V1
HTML

“Hello world”

Behavior
Visibility/
Sound

sound

Map2

Recgo 1
(Marker

recognizer)

D: bg_image_stream

E: Marker1_present

D: Marker1_pose

Conclusion: Component based extensions for MAR

• Individual constructs for different “modules” of info

• Mix and match: realize a comprehensive set of MAR contents

• Follow the MAR reference model (e.g. sensor, real capture, recognizer, sensor, tracker, …)

• Unified MAR Scene (which is virtual regardless of existence of real objects in it or not)

• More content elements and logic more explicit and manageable

• Decoupling into separate components (e.g. sensor, event, and recognizer)

• Derive template for given system class

• Minimize programming and explicit “routing”

• Reuse existing constructs

• Applicable to different formats as extensions: X3D, HTML 5, ARML, ...

• Initial UML-like based modeling

Conclusion: Component based extensions for MAR

• Future work

• Complete specification and proofreading

• More functions

• Image based models

• Haptics and other multimodality

• Live actors and behaviors (c.f. K. Yoo)

• Meta information (c.f. W. Woo)

• Perceptual elements (e.g. brightness against dynamic environment conditions)

• More use cases and application file formats

• SLAM based

• Spatial/Projection AR

• Multi-user: Tele-presence, SNS, …

• Continued validation by implementation

• CD by August, 2018 / DIS by December 2018

