instantreality 1.0 - tutorial - Shader programs

10of5

http://www.instantreality.org/tutorial/shader-programs/

Shader programs Keywords:

Summary: This tutorial shows how to write a simple shader in X3D. tutorial, X3D, world, rendering
Author(s): Yvonne Jung

Shader program definition Date: 2007-02-05

First an example of a simple Shape with a basic shader Appearance, which contains an

ImageTexture, a ComposedShader and two ShaderPart nodes, is shown. GLSL- Shaders are written within a ShaderPart.
The shader code can be either embedded within the X3D file or in another file containing only the shader program. There are
three types of ShaderPart nodes: vertex, fragment and geometry. The latter is only supported on Shader Model 4.0/ Direct3D
10.0 hardware or later (e.g. NVidia GeForce 8800 graphics card). The program stages for the other two types are visualized in
the following image (texture access for vertex shaders needs at least Shader Model 3.0 hardware).

Uniform parameters can be set via the dynamic field mechanism: For each uniform variable needed, a field or an exposedField
with the same name and data type should be defined. This has to be done in the ComposedShader node. In order to define
textures (uniform variables of any sampler type), an exposedField of type SFInt32 referring to the appropriate texture unit
has to be defined (in case of the following example this is the first one, i.e. unit 0, because no MultiTexture is used).

When writing a geometry shader, there are three other fields for defining input and output primitive types as well as the
maximum number of vertices to be generated in the shader: geometrylnputType, geometryOutputType and
geometryVerticesOut.

Note: Generic vertex attribute parameters are currently not supported. If they are needed (e.g.tangents), they can be
encoded in the texCoord or color field of the geometry node.

Code: A basic shader appearance

Shape {
appearance Appearance {
texture ImageTexture {
url "testImage.jpg"

}

shaders ComposedShader {
exposedField SFInt32 tex® 2]
exposedField SFVec3f diffuse .7 .7 .7

parts [
DEF vert ShaderPart {
type "vertex"
url "testShadervP.glsl"
}
DEF fs ShaderPart {
type "fragment"
url "testShaderFP.glsl"

}
geometry Sphere {}

If you want to use CG for your shader programs, you have to replace the ComposedShader node by a ProgramShader node
with its language field set to "cg". Additionally the parts field has to be replaced by the programs field and the ShaderPart
nodes by ShaderProgram nodes.

9/10/2009 12:11 PM

instantreality 1.0 - tutorial - Shader programs http://www.instantreality.org/tutorial/shader-programs/

l l Texture
: Vertex Fragment
— md Fasterizer B y
Vertex Buffer Processor Frocessor

T

Image: Program Stages for Shader Model 3.0 graphics hardware.

Example: Phong shader

This example shows, how a simple glsl shader implementation is done within X3D. For additionally demonstrating how to
access a texture, the diffuse color is taken from an earth texture. In order to ensure the correct mapping between the X3D
field defining the texture unit and the sampler uniform definition, both variables must have the same name, which - in case of
our example - is earthTex. By the way, the same goes for all other uniform variables likewise.

Code: Uniform parameters

Appearance {

texture ImageTexture {
url "earth.jpg"

}

shaders ComposedShader {
exposedField SFInt32 earthTex ©
exposedField SFFloat ambient .2
exposedField SFVec3f specular .7 .7 .7

parts [
...

Image: Left: standard OpenGL shading; right: per pixel phong shading.

2 of 5 9/10/2009 12:11 PM

instantreality 1.0 - tutorial - Shader programs http://www.instantreality.org/tutorial/shader-programs/

Vertex shader

In the vertex shader the incoming vertex position is transformed with the current modelview-projection matrix with the help
of the ftransform function. After that all varying parameters, which are required by the subsequent fragment shader and
interpolated across the primitive during rasterization (like gl_TexCoord and the user defined ones for normal, eye vector and
light vector) are calculated.

Code:

DEF vs ShaderPart {
type "vertex"
url "
varying vec3 lightVec;
varying vec3 eyeVec;
varying vec3 normalVec;

void main(void)

{

gl Position = ftransform();

gl TexCoord[@] = gl MultiTexCoorde;
normalVec = gl Normal;

vec4 eyePos = gl ModelViewMatrixInverse * vec4(0., 0., 0., 1.);
eyeVec = eyePos.xyz - gl Vertex.xyz;

vec4 lightPos = gl _ModelViewMatrixInverse * vec4(gl_LightSource[@].position.xyz, 1.0);
lightVec = lightPos.xyz - gl _Vertex.xyz;

Pixel Shader

The fragment shader realizes the Blinn-Phong lighting model, without attenuation factor (the complete formula is depicted in
the following image). After texture access all vectors are normalized and the final fragment color is calculated. A good
introductory text to glsl shader programming is the so-called Orange Book. Another application domain for shader
programming is imaging; in the files section you will find examples for both.

—

D) + ksrler. & I—SDecmax(ﬁ ’ H*D)Ehi h=—-—

| = Kamb @ Lamb + kaifr 2 Lgigmax (1 -

Image: Blinn-Phong lighting formula without attenuation, the operator symbol defines the component-wise
product.

Code:

30f5 9/10/2009 12:11 PM

instantreality 1.0 - tutorial - Shader programs

4 of 5

DEF fs ShaderPart {
type "fragment"

url "
uniform

uniform
uniform

varying
varying
varying

sampler2D earthTex;

vec3 specular;
float ambient;

vec3 lightVec;
vec3 eyeVec;
vec3 normalVec;

void main(void)

{

Using HDR Images

http://www.instantreality.org/tutorial/shader-programs/

vec3 texCol = texture2D(earthTex, gl TexCoord[0].st).rgb;

lightVec = normalize(lightVec);

eyeVec = normalize(eyeVec);

normalVec = normalize(normalVec);

vec3 halfVec = normalize(eyeVec + lightVec);

float ndotl = max(dot(lightVec, normalVec), 0.0);
float ndoth

(ndotl > 0.9) ? pow(max(dot(halfVec, normalVec), 0.0), 128.) : 0.0;

vec3 color = @.2*ambient + ndotl*texCol + ndoth*specular;

gl FragColor = vec4(color, 1.0);

Code: Using an hdr image of type OpenEXR

ImageCubeMapTexture {

repeats
repeatT
repeatR

FALSE
FALSE
FALSE

internalFormat "rgbalé6f"
url "StageEnvCube.exr"

"lines", "line_strip",
= geometryVerticesOut sets the maximum number of vertices to be generated by the geometry shader, which is

Geometry Shader Extensions

= geometrylnputType defines the input primitive type for the geometry shader, possible values are "auto",

= geometryOutputType defines the output primitive type for the geometry shader, possible values are "auto",

triangles", "triangle_strip";

Using hdr images within your shader is quite straightforward. Simply create a texture with your OpenEXR or Radiance image
and set the internalFormat field to a floating point format like rgbal6f as shown in the following code snippet, where a hdr
cube texture is used. The texture look-up in your shader works just like already explained before, but additionally you should
apply some kind of tone mapping before displaying the final color value. The field internalFormat can also be used in
combination with ordinary Idr images in case you want to perform a texture look-up in your vertex shader e.g. for
displacement mapping. Here you need "nearest" filtering, and your height map must internally be converted into floating
point format by setting this field to something like luminance32f.

Geometry shaders (an example is shown below, additionally you find a simple test in the files section) require to set some
additional fields:

points”,

"lines", "triangles", "lines_adjacency", "line_strip_adjacency", "triangles_adjacency", "triangle_strip_adjacency";

points",

9/10/2009 12:11 PM

instantreality 1.0 - tutorial - Shader programs

50f5

important for performance.

Code:

ComposedShader {

geometryInputType "points"
geometryOutputType "triangle_strip"
geometryVerticesOut 16

exposedField SFInt32 dataFieldTex ©
exposedField SFInt32 edgeTableTex 1
exposedField SFInt32 triTableTex 2

exposedField SFVec3f dataStep 0.02 0.02 0.04

exposedField SFFloat isolevel 0.2

#...]

parts [

Files:
= phongBspGLSL.w
= edge.wrl
= geoShader.wrl

DEF vert ShaderPart {
type "VERTEX"
url "TestG80_VS

}

DEF geo ShaderPart {
type "GEOMETRY"
url "TestG80_GS

}

DEF frag ShaderPart {
type "FRAGMENT"
url "TestG80_FS

rl

.gls1"

.gls1"

.gls1"

http://www.instantreality.org/tutorial/shader-programs/

9/10/2009 12:11 PM

